K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

Hàm số bậc nhất có dạng y = ax + b (a ≠ 0)

Đồ thị hàm số y = ax + b đi qua M(-3; 1) và N(1; 2) nên tọa độ của M và N nghiệm đúng phương trình hàm số.

Điểm M: 1 = -3a + b

Điểm N: 2 = a + b

Hai số a và b là nghiệm của hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

7 tháng 5 2018

Hàm số bậc nhất có dạng y = ax + b (a  ≠  0)

Đồ thị hàm số y = ax + b đi qua M( 2 ; 1) và N(3; 3 2  - 1) nên tọa độ của M và N nghiệm đúng phương trình hàm số.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hai số a và b là nghiệm của hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

22 tháng 2 2020

a.

ax+b=y

M(-3,1) → x=-3; y=1

N(1;2) → x=1 ' y=2

20 tháng 1 2017

Hàm số bậc nhất có dạng y = ax + b (a  0)

Điểm N nằm trên đường thẳng (d): 3x – 5y = 1 có hoành độ bằng 2 nên tung độ của N bằng: 3.2 - 5y = 1 ⇔ -5y = -5 ⇔ y = 1

Điểm N( 2; 1)

Đồ thị hàm số y = ax + b đi qua M(-2; 9) và N(2; 1) nên tọa độ của M và N nghiệm đúng phương trình hàm số.

Điểm M: 9 = -2a + b

Điểm N: 1 =2a + b

Hai số a và b là nghiệm của hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

23 tháng 4 2017

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5.

23 tháng 4 2017

Bài giải:

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5


Gọi (d): y=ax+b(a<>0) là hàm số cần tìm

a: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-3a+b=1\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{4}\\b=\dfrac{7}{4}\end{matrix}\right.\)

b: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\3a+b=3\sqrt{2}-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\sqrt{2}\\b=-1\end{matrix}\right.\)

c: Thay x=2 vào (d), ta được:

6-5y=1

=>y=1

Vậy: A(2;1)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=1\\-2a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=5\\a=-2\end{matrix}\right.\)

9 tháng 5 2017

Lời giải

a) Hàm số bậc nhất đồng biến khi (a>0) => m-3 >0 => m>3

b) A(1;2) => y(1) =2 => (m-3).1=2 => m=5

c) B(1;-2) => y(1) =-2=> (m-3).1=-2 => m=1

d) Hàm số bậc nhất

31 tháng 5 2017

a) Hàm số \(y=\left(m-3\right)x\) đồng biến khi \(m-3>0\Leftrightarrow m>3\)

Hàm số \(y=\left(m-3\right)x\) nghịch biến khi \(m-3< 0\Leftrightarrow m< 3\)

Đồ thị của hàm số y = ax + b ( a khác 0)

23 tháng 4 2017

a) Giả sử M là giao điểm của đồ thị của hàm số (1) và đường thẳng y = 2x -1. Vì M thuộc đường thẳng y = 2x - 1 và có hoành độ là x = 2 nên tung độ của nó là y = 2 . 2 - 1 = 3.

Như vậy ta có M(2; 3).

Vì M thuộc đồ thị của hàm số (1) nên 3 = a . 2 - 4. Do đó a = 3,5.

b) Gọi N là giao điểm của đồ thị của hàm số (1) và đường thẳng y = -3x + 2. Lập luận tương tự như trên, ta tìm được N(-1; 5) và a = -9.

23 tháng 4 2017

Bài giải:

a) Giả sử M là giao điểm của đồ thị của hàm số (1) và đường thẳng y = 2x -1. Vì M thuộc đường thẳng y = 2x - 1 và có hoành độ là x = 2 nên tung độ của nó là y = 2 . 2 - 1 = 3.

Như vậy ta có M(2; 3).

Vì M thuộc đồ thị của hàm số (1) nên 3 = a . 2 - 4. Do đó a = 3,5.

b) Gọi N là giao điểm của đồ thị của hàm số (1) và đường thẳng y = -3x + 2. Lập luận tương tự như trên, ta tìm được N(-1; 5) và a = -9.