K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).

Suy ra: ∠C = 180º – (∠A + ∠B)

Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.

Ta có ½. (∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 111o = 69o.

Suy ra ∠A + ∠B = 138o

Suy ra ∠C = 180o – (∠A + ∠B) = 180o − 138o = 42o.

Vì CM là tia phân giác của góc ACB nên: ∠(ACM) = ∠(BCM) = 420 : 2 = 21o.

25 tháng 5 2017

A B C M A1 B1

b,

Trong \(\Delta\) AMB có:

\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^0\)

\(\Rightarrow\widehat{BAM}+\widehat{ABM}=44^0\)

Hay \(\dfrac{1}{2}\left(\widehat{BAC}+\widehat{ABC}\right)=44^0\)

=> \(\widehat{BAC}+\widehat{ABC}=88^0\)

Trong \(\Delta ABC\) có:

\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Rightarrow\widehat{ACB}=92^0\)

Ta lại có: hai đường phân giác \(\text{AA}_1\)\(BB_1\) cắt nhau tại M => M là giao của 3 đường phân giác

=> CM là phân của của \(\widehat{C}\)

=> \(\widehat{BCM}=\widehat{MCA}=\dfrac{1}{2}\widehat{C}=\dfrac{1}{2}.92^0=46^0\)

b,

Tương tự câu a, ta tìm được:

\(\widehat{ACM}=\widehat{BCM}=21^0\)

6 tháng 11 2016

Bài 1:

a)\(\frac{2}{3}.\frac{5}{2}-\frac{3}{4}.\frac{2}{3}=\frac{5}{3}-\frac{1}{2}=\frac{7}{6}\)

b)\(2.\left(\frac{-3}{2}\right)^2-\frac{7}{2}=\frac{2.9}{4}-\frac{7}{2}=\frac{9-7}{2}=\frac{2}{2}=1\)

c)\(-\frac{3}{4}.\frac{68}{13}-0,75.\frac{36}{13}=\frac{-3.4.17}{4.13}-\frac{3.9.4}{4.13}=\frac{-51-27}{13}=\frac{-78}{13}=-6\)

Bài 2:

a)|x-1,4|=1,6

\(\Rightarrow\left[\begin{array}{nghiempt}x-1,4=1,6\\x-1,4=-1,6\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=-0,2\end{array}\right.\)

b) \(\frac{3}{4}-x=\frac{4}{5}\)

\(x=\frac{3}{4}-\frac{4}{5}=-\frac{1}{20}\)

c)(1-2x)3=-8

(1-2x)3=(-2)3

1-2x=-2

2x=3

x=\(\frac{3}{2}\)

Bài 3:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)

\(\Rightarrow\begin{cases}x=2k\\y=5k\\z=7k\end{cases}\)

A=\(\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)

=> x=4/5 . 2= 8/5

y=4/5 . 5=4

z=4/5.7=28/5

6 tháng 11 2016

Làm hết?

24 tháng 12 2016

hay thật

 

24 tháng 12 2016

Merry Christmas, too!

30 tháng 11 2016

Giá trị x cần tìm là -0,7

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

31 tháng 8 2020

Giải sách bài tập Toán 7 | Giải sbt Toán 7         Hình bs 7

31 tháng 8 2020

                                                     Bài giải

a b c d

Bạn ơi hình bs là gì ? Mà lấy đâu ra \(\widehat{C_1}\text{ ; }\widehat{D_2}\)

8 tháng 8 2021

giúp tui đi mà

21 tháng 11 2017

nh 98): Xét ΔABC và ΔABD có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABC = ΔABD (g.c.g)

- Hình 99): Ta có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Xét ΔABD và ΔACE có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

Nên ΔABD = ΔACE ( g.c.g)

Xét ΔADC và ΔAEB có:

Giải bài 34 trang 123 Toán 7 Tập 1 | Giải bài tập Toán 7

    DC = EB (Vì DC = DB + BC ; EB = EC + BC mà DB = EC)

Nên ΔADC = ΔAEB (g.c.g)

21 tháng 11 2017

Xem hình 98)

∆ABC và ∆ABD có: 

ˆA1A1^=ˆA2A2^(gt)

AB là cạnh chung.

ˆB1B1^=ˆB2B2^(gt)

Nên ∆ABC=∆ABD(g.c.g)

Xem hình 99)

Ta có:

ˆB1B1^+ˆB2B2^=180(Hai góc kề bù).

ˆC1C1^+ ˆC2C2^=180(Hai góc kề bù)

Mà ˆB2B2^=ˆC2C2^(gt)

Nên ˆB1B1^=ˆC1C1^

* ∆ABD và ∆ACE có:

ˆB1B1^=ˆC1C1^(cmt)

BD=EC(gt)

ˆDD^ = ˆEE^(gt)

Nên ∆ABD=∆ACE(g.c.g)

* ∆ADC và ∆AEB có:

ˆDD^=ˆEE^(gt)

ˆC2C2^=ˆB2B2^(gt)

DC=EB

Nên ∆ADC=∆AEB(g.c.g)

29 tháng 11 2016

0,2(63)= \(\frac{1}{10}\).[2+0,(63)] = \(\frac{1}{10}\).[2+0,(01).63] = \(\frac{1}{10}\).[2+\(\frac{1}{99}\).63] = \(\frac{1}{10}\).\(\frac{29}{11}\)=\(\frac{29}{110}\)