Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt t = cosx, t ∈ [-1 ; 1] ta được phương trình 2t2 - 3t + 1 = 0 ⇔ t ∈ {1 ; }.
Nghiệm của phương trình đã cho là các nghiệm của hai phương trình sau:
cosx = 1 ⇔ x = k2π và cosx = ⇔ x = + k2π.
Đáp số : x = k2π ; x = + k2π, k ∈ Z.
b) Ta có sin4x = 2sin2xcos2x (công thức nhân đôi), do đó phương trình đã cho tương đương với
2sin2x(1 + √2cos2x) = 0 ⇔
⇔
e.
\(3\left(1-sin^2x\right)-5sinx-1=0\)
\(\Leftrightarrow-3sin^2x-5sinx+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{3}\\sinx=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)
f.
\(2\left(2cos^2x-1\right)-cosx+7=0\)
\(\Leftrightarrow4cos^2x-cosx+5=0\)
Phương trình vô nghiệm
g.
\(\Leftrightarrow\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)=2\)
\(\Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=\sqrt{2}>1\)
Phương trình vô nghiệm
h.
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
a/ Đặt \(sinx=t\Rightarrow-1\le t\le1\)
Phương trình trở thành:
\(2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2>1\left(l\right)\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow sinx=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
b/ \(\Leftrightarrow sinx=-cos3x\)
\(\Leftrightarrow sinx=sin\left(3x-\frac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3x-\frac{\pi}{2}+k2\pi\\x=\pi-3x+\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{3\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm
(k ∈ Z)