Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để A có giá trị bằng 1
suy ra 3 phải chia hết cho n-1
suy ra n-1 \(\in\)Ư(3)={1,3 }
TH1 n-1=1\(\Rightarrow\)n=1+1=2
TH2 n-1=3\(\Rightarrow\)n=3+1=4
Vậy n = 2 hoặc n =4
a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1 suy ra n-1=3
n=4
b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương
từ trên suy ra n-1=1 hoặc 3
nếu n-1=1 suy ra n =2 3/n-1=3 là snt
nếu n-1=3 suy ra 3/n-1=3/3=1 loại vì ko là snt
\(C=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}=\frac{5.2^{30}\cdot3^{27}-2^{29}\cdot3^{20}}{5\cdot2^{38}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}=\frac{\left(5\cdot2\cdot3^7-1\right)\left(2^{29}\cdot3^{20}\right)}{\left(5\cdot2^9\cdot3-7\right)\left(2^{29}\cdot3^{18}\right)}\)
Ra kết quả hơi to nên không tính. Bạn tính hộ mình nhé OK!!!
Ta có :
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)
Vì \(5\) là số nguyên nên \(\left(\sqrt{x}+1\right)⋮\left(\sqrt{x}-1\right)\)
Lại có : \(\sqrt{x}+1=\sqrt{x}-1+2\) chia hết cho \(\sqrt{x}-1\) \(\Rightarrow\)\(2⋮\left(\sqrt{x}-1\right)\)\(\Rightarrow\)\(\left(\sqrt{x}-1\right)\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)
Suy ra :
\(\sqrt{x}-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(4\) | \(0\) | \(9\) | \(1\) |
Vậy để \(A=5\) thì \(x\in\left\{4;0;0;1\right\}\)
=> \(\frac{\sqrt{x}+1}{\sqrt{x-1}}=5\) ( Đkxđ: \(x\ge1\))
=> \(\sqrt{x}+1=5\sqrt{x-1}\)
Bình phương hai vế ta được :
=> \(x+2\sqrt{x}+1=25\left(x-1\right)\)
=> \(12x-\sqrt{x}-13=0\)
Giải ra ta được : \(\orbr{\begin{cases}x=\frac{13}{12}\left(tm\right)\\x=-1\left(ko.tm\right)\end{cases}}\)
Vậy \(x=\frac{13}{12}\)
đế phân số nhận giá trị nguyên
=>10x+15 chia hết cho 5x+1
=>10x+2+13 chia hết cho 5x+1
=>2(5x+1)+13 chia hết cho 5x+1
vì 5x+1 chia hết cho 5x+1
=>2(5x+1) chia hết cho 5x+1
=>13 chia hết cho 5x+1
=>5x+1 thuộc Ư(13)={1;13;-1;-13}
=>5x+1 thuộc {1;13;-1;-13}
=>5x thuộc {0;12;-2;-14}
=>x thuộc {0;2,4;-0,4;-2,8}
vì x có các giá trị nguyên
=>x=0
vậy x=0
\(C=\frac{2^{19}.27^3-15.4^9.9^4}{6^9.2^{10}-12^{10}}\)
\(C=\frac{2^{19}.\left(3^3\right)^3-3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}-\left(3.2^2\right)^{10}}\)
\(C=\frac{2^{19}.3^9-3.5.2^{18}.3^8}{2^9.3^9.2^{10}-3^{10}.2^{20}}\)
\(C=\frac{2^{19}.3^9-3^9.2^{18}.5}{2^{19}.3^9-3^{10}.2^{20}}\)
\(C=\frac{2^{18}.3^9\left(2-5\right)}{2^{18}.3^9\left(2-3.2^2\right)}\)
\(C=\frac{-3}{-10}=\frac{3}{10}\)
a: \(A=2018-\left|10-x\right|\le2018\)
Dấu '=' xảy ra khi x=10
\(B=-\left(x+2\right)^2+1999\le1999\)
Dấu '=' xảy ra khi x=-2
b: \(A=\left(2x-8\right)^2+3>=3\)
Dấu '=' xảy ra khi x=4
\(B=\left|x^2-25\right|-2017>=-2017\)
Dấu '=' xảy ra khi x=5 hoặc x=-5
1717/8585 = 17/85 = 1/5. 1313/5151=13/51. Mà 1/5 <13/51
Vay 1718 <1313/5151
\(\frac{17}{85}vs\frac{13}{51}=\frac{1}{5}vs\frac{1}{3}\)
ta thấy 5>3
=>\(\frac{1717}{8585}< \frac{1313}{5151}\)
Chọn (C) 40.