Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -3 \(⋮\)3n+1
=> 3n+1 \(\in\)Ư(-3)
=> 3n+1 \(\in\){-1;1;3;-3}
Ta co bang:
3n+1 | -3 | -1 | 1 | 3 |
n | -4/3 | -2/3 | 0 | 2/3 |
loại | loại | chọn | loại |
KL
b) 8\(⋮\)2n+1
=> 2n+1\(\in\) Ư{8}
=>2n+1 \(\in\){-1;1;4;2;8;-2;-4;-8}
vì 2n là số chẵn => 2n+1 là số lẻ
=> 2n+1\(\in\){-1;1}
2n+1 | -1 | 1 |
n | -1 | 0 |
chọn | chọn |
c)n+1 \(⋮\)n-2
=> n-2 +3 \(⋮\)n-2
Vì n-2\(⋮\)n-2 mà n-2+3\(⋮\)n-2
=>3\(⋮\)n-2
=>n-2\(\in\) Ư{3}
=>n-2\(\in\){-1;-3;1;3}
n-2 | -1 | 1 | -3 | 3 |
n | 1 | 3 | -1 | 5 |
chọn | chọn | chọn | chọn |
d)3n+2 \(⋮\)n-1
=>3(n-1)+5 \(⋮\)n-1
Vì 3(n-1)\(⋮\)n-1 mà 3(n-1)+5\(⋮\)n-1
=>5\(⋮\)n-1
=>n-1\(\in\)Ư{5}
=>n-1\(\in\){-5;-1;1;5}
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
chọn | chọn | chọn | chọn |
e)3-n:2n+1
=> 2(3-n)\(⋮\)2n+1
=>6-2n\(⋮\)2n+1
=>7-(2n+1)\(⋮\)2n+1
Vì -(2n+1)\(⋮\)2n+1 mà 7 -(2n+1) \(⋮\)2n+1
=>2n+1 \(\in\)Ư{7}
=>2n+1\(\in\){-7;-1;1;7}
2n+1 | -7 | -1 | 1 | 7 |
n | -4 | -1 | 0 | 3 |
chọn | chọn | chọn | chọn |
a)\(n+7⋮n+2\)
\(\Rightarrow\left(n+2\right)+5⋮n+2\)
\(\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n+2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy \(n\in\left\{-1;-3;3;-7\right\}\)
b)\(9-n⋮n-3\)
\(\Rightarrow6-\left(n-3\right)\)
\(\Rightarrow6⋮n-3\)
\(\Rightarrow n-3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
nếu n-3=1 thì n=4
nếu n-3=-1 thì n=2
nếu n-3=2 thì n=5
nếu n-3=-2 thì n=1
nếu n-3=3 thì n=6
nếu n-3=-3 thì n=0
nếu n-3=6 thì n=9
nếu n-3=-6 thì n=-3
Vậy \(n\in\left\{4;2;5;1;6;0;9;-3\right\}\)
c)\(n^2+n+17⋮n+1\)
\(\Rightarrow n\left(n+1\right)+17⋮n+1\)
\(\Rightarrow17⋮n+1\)
\(\Rightarrow n+1\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
nếu n+1=1 thì n=0
nếu n+1=-1 thì n=-2
nếu n+1=17 thì n=16
nếu n+1=-17 thì n=-18
Vậy \(n\in\left\{0;-2;16;-18\right\}\)
làm mẫu một bài thôi nha
3n+2=3.(n-1)+5
hay 3(n-1)+5 phải chia hết cho n-1, mà 3(n-1) chia hết cho n-1, vậy 5 phải chia hết cho n-1, U(5)=1;5 =>n=2 hoặc n=6
1)
\(n\left(2n+7\right)\left(7n+7\right)=7n\left(n+1\right)\left(2n+4+3\right)\)
\(=7n\left(n+1\right)2\left(n+2\right)+3.7\left(n+1\right)n\)
Ta có n(n+1)(n+2) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
(n+1)n là tích 2 số tự nhien liên tiếp nên chia hêt cho 3
=> 3.7.(n+1)n chia hết cho 6
=>\(n\left(2n+7\right)\left(7n+7\right)\) chia hết cho 6
2)
\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n+1\right)\left(n-1\right)-12n\)
Ta có n(n+1)(n - 1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
12n chia hết cho 6
=>\(n^3-13n\) chia hết cho 6
3)
\(m.n\left(m^2-n^2\right)=m^3.n-n^3.m=m.n\left(m^2-1\right)-m.n\left(n^2-1\right)\)
\(=n.\left(m-1\right)m\left(m+1\right)-m\left(n-1\right)n\left(n+1\right)\) chia hết cho 3
Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d
4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d
(12n+4 )- (12n+3) chia hết cho d
1 chia hết cho d
vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau