Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 - 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 5 nên 5n(5n + 4) 5 ∀n ∈ Z.
Ta có : \(\left(5n+2\right)^2-4\)
\(=\left(5n+2-2\right).\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)\)
Vì \(5⋮5\) nên \(\left(5n+2\right)^2-4⋮5\forall n\in Z\)
Bài giải:
Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 - 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 ⋮⋮ 5 nên 5n(5n + 4) ⋮⋮ 5 ∀n ∈ Z.
\((5n + 2)^2 - 4\) \(= (5n +2 )^2 - 2^2\)
\(= (5n +2 - 2) (5n + 2 + 2 )\)
\(= 5n(5n + 4)\)
\(\Rightarrow\) \(5\) \(⋮\) \(5\) nên \(5n(5n +4)\) \(⋮\) \(5\) với mọi số nguyên thuộc \(n\)
Vậy biểu thức \((5n + 2)^2 - 4\) chia hết cho \(5\) với mọi số nguyên thuộc \(n\)
a, (n+3)2-(n-1)2
= n2+6n+9-n2+2n-1
= 8n + 8
= 8(n+1) chia hết cho 8
Ta có: \(\left(5n-2\right)^2-\left(2n-5\right)^2=\left(5n-2-2n+5\right).\left(5n-2+2n-5\right)\)
\(=\left(3n+3\right)\left(7n-7\right)=3\left(n+1\right).7\left(n-1\right)\)
\(=21\left(n^2-1\right)⋮21\) (điều phải chứng minh)
Lời giải:
Sửa đề thành: \(2^{5n+3}+5^n.3^{n+2}\) mới đúng bạn nhé.
Ta có:
\(2^{5n+3}+5^n.3^{n+2}=8.2^{5n}+5^n.3^n.9\)
\(=8.32^n+9.15^n\)
Thấy rằng: \(32\equiv 15\pmod {17}\Rightarrow 8.32^n\equiv 8.15^n\pmod {17}\)
\(\Rightarrow 8.32^n+9.15^n\equiv 8.15^n+9.15^n\equiv 17.15^n\equiv 0\pmod {17}\)
Tức là: \(2^{5n+3}+5^n.3^{n+2}=8.32^n+9.15^n\vdots 17\) với mọi số $n$ không âm.
cách khác :
+ nếu \(n=1\) ta có : \(2^{5n+3}+5^n.3^{n+2}=391⋮17\)
+ giả sử \(n=k\) thì \(2^{5k+3}+5^k.3^{k+2}⋮17\)
khi đó nếu \(n=k+1\) \(\Rightarrow2^{5n+3}+5^n.3^{n+2}=2^{5\left(k+1\right)+3}+5^{k+1}.3^{k+1+2}\)
\(=2^{5k+3+5}+5^{k+1}.3^{k+2+1}=2^{5k+3}.2^5+5^k.3^{k+2}.5.3\)
\(=15\left(2^{5k+3}+5^k+3^{k+2}\right)+17.2^{5k+3}⋮17\)
\(\Rightarrow\left(đpcm\right)\)
Ta có:
\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)
Ta thấy:
\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
Và \(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)
Ta có:
(5n + 2)2 – 4
= (5n + 2)2 – 22
= (5n + 2 – 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 ⋮ 5 nên 5n(5n + 4) ⋮ 5 ∀n ∈ Ζ.
Vậy (5n + 2)2 – 4 luôn chia hết cho 5 với n ∈ Ζ