Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)
Điều kiện x ≠ 0 và x ≠ -3
Ta có:
Vì x 2 - 4 x + 5 = x 2 - 4 x + 4 + 1 = x - 2 2 + 1 > 0 với mọi giá trị của x nên
- x 2 + 4 x - 5 = - x - 2 2 + 1 < 0 với mọi giá trị của x.
Vậy giá trị biểu thức luôn luôn âm với mọi giá trị x ≠ 0 và x ≠ -3
a) \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
b) \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
c) \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\) với mọi x,y
d) bạn kiểm tra lại đề câu d) nhé:
\(x^2+4y^2+z^2-2x-6y+8z+15\)
\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
1, \(A=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\left(x^4-2.\dfrac{1}{2}x^2+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\)\(=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)
\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)
\(\left(x^2-\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge0\)
Từ 3 điều trên \(\Rightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x^2-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\ge0\)Vậy biểu thức A luôn có giá trị dương với mọi giá trị của biến
2,
a, \(M=25x^2-20x+7\)
\(=25x^2-20x+4+3\)
\(=\left(5x-2\right)^2+3\)
Ta có: \(\left(5x-2\right)^2\ge0\forall x\Rightarrow\left(5x-2\right)^2+3\ge0\)
Vậy biểu thức M luôn có giá trị dương với mọi giá trị của biến
b, \(N=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1\)
Ta có: \(\left(3x-y\right)^2\ge0\forall x,y\)
\(y^2\ge0\Rightarrow y^2+1\ge0\forall y\)
Từ 2 điều trên \(\Rightarrow\left(3x-y\right)^2+y^2+1\ge0\)
Vậy biểu thức N luôn có giá trị dương với mọi giá trị của biến
3,
a, \(P=2x-x^2-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-1\le0\)
Vậy biểu thức P luôn có giá trị âm với mọi giá trị của biến
b, \(Q=-x^2-y^2+8x+4y-21\)
\(=-\left(x^2-8x+16+y^2-4y+4+1\right)\)
\(=-\left(x-4\right)^2-\left(y-2\right)^2-1\)
Ta có: \(\left(x-4\right)^2\ge0\forall x\Rightarrow-\left(x-4\right)^2\le0\)
\(\left(y-2\right)^2\ge0\forall x\Rightarrow-\left(y-2\right)\le0\)
Từ 2 điều trên \(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2\le0\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2-1\le0\)Vậy biểu thức Q luôn có giá trị âm với mọi giá trị của biến
\(B=x^2-x+\dfrac{1}{2}=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}>0\)
Câu a : Ta có :
\(B=x^2-x+\dfrac{1}{2}=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}>0\)
Câu b : Ta có :
\(C=\left(2n+1\right)^2-1=\left(2n+1-1\right)\left(2n+1+1\right)=2n\left(2n+2\right)=4n^2+4n=8n\left(\dfrac{1}{2}n+\dfrac{1}{2}\right)\)
Do có thừa số là 8 nên \(8n\left(\dfrac{1}{2}n+\dfrac{1}{2}\right)\) luôn chia hết cho 8
\(\Rightarrow C=\left(2n+1\right)^2-1\) chia hết cho 8 ( đpcm )
\(\frac{2}{x^2+2y^2+3}\le\frac{1}{xy+x+1}\)
\(\Leftrightarrow x^2+2y^2+3\ge2xy+2y+2\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\)
Vì bđt cuối luôn đúng mà các phép biến đổi trên là tương đương nên bđt ban đầu luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\Leftrightarrow x=y=1\)
Ta có : \(\frac{1}{a^2+2b^2+3}=\frac{1}{a^2+b^2+b^2+1+2}\le\frac{1}{2ab+2b+2}\) ( AD BĐT Cô si cho a ; b dương ) ( 1 )
Tương tự : \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2bc+2c+2};\frac{1}{c^2+2a^2+3}\le\frac{1}{2ac+2a+2}\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow P\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ac+2a+2}\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)\left(abc=1\right)\)
\(=\frac{1}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
Điều kiện x ≠ 1 và x ≠ - 1
Ta có:
Biểu thức dương khi x 2 + 2 x + 3 > 0
Ta có: x 2 + 2 x + 3 = x 2 + 2 x + 1 + 2 = x + 1 2 + 2 > 0 với mọi giá trị của x.
Vậy giá trị của biểu thức dương với mọi giá trị x ≠ 1 và x ≠ - 1