K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

a) Phép quay tâm O góc \(120^0\) biến F, A, B lần lượt thành B, C, D; Biến trung điểm I của AB thành trung điểm J của CD. Nên biến tam giác AIF thành tam giác CJB

b) Phép quay tâm E góc \(60^0\) biến A, O, F lần lượt thành C, D, O

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

31 tháng 3 2017

a)

Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:

β = α - , x = r cos α, y = r sin α

Suy ra:

x' = r cos β = r cos ( α - ) = r sinα = y

y' = r sin β = r sin ( α - ) = - r cos α= - x

Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự

b)

undefined

Gọi tam giác {A_{1}}^{}{B_{1}}^{}{C_{1}}^{} là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó {A_{1}}^{}(2;-3), {B_{1}}^{} (5;-4), {C_{1}}^{}(3;-1) là đáp số cần tìm.

31 tháng 3 2017

a) (hình bên)

Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:

β = α - , x = r cos α, y = r sin α

Suy ra

x' = r cos β = r cos ( α - ) = r sinα = y

y' = r sin β = r sin ( α - ) = - r cos α= - x

Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự

b) ( hình 1.26)

Gọi tam giác {A_{1}}^{}{B_{1}}^{}{C_{1}}^{} là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó {A_{1}}^{}(2;-3), {B_{1}}^{} (5;-4), {C_{1}}^{}(3;-1) là đáp số cần tìm

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

31 tháng 3 2017

a) Tam giác BCO.

b) Tam giác COD.

c) Tam giác EOD.

31 tháng 3 2017

a) Tam giác BCO.

b) Tam giác COD.

c) Tam giác EOD.

31 tháng 3 2017

undefined

- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: \(\overrightarrow{AG}=\overrightarrow{BB'}=\overrightarrow{CC'}\)

. Suy ra \(^T\overrightarrow{AG}\left(A\right)=G,^T\overrightarrow{AG}\left(B\right)=B',^T\overrightarrow{AG}\left(C\right)=C'\)

Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ \(\overrightarrow{AG}\) là tam giác GB'C'.

- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có \(\overrightarrow{DA}=\overrightarrow{AG}\). Do đó, \(^T\overrightarrow{AG}\left(D\right)=A\).

31 tháng 3 2017

undefined

- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: −−→AG=−−→BB′=−−→CC′AG→=BB′→=CC′→

. Suy ra T−−→AG(A)=G,T−−→AG(B)=B′,T−−→AG(C)=C′TAG→(A)=G,TAG→(B)=B′,TAG→(C)=C′

Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ −−→AGAG→ là tam giác GB'C'.

- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có −−→DA=−−→AGDA→=AG→. Do đó, T−−→AG(D)=ATAG→(D)=A.

31 tháng 3 2017

undefined

Ảnh của A, B, C lần lượt là trung điểm A', B', C' của các cạnh HA, HB, HC.

31 tháng 3 2017

undefined

Ảnh của A, B, C lần lượt là trung điểm A', B', C' của các cạnh HA, HB, HC.