Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(log_2\left(\frac{8x-2^x-12m}{3}\right)=t\)
\(\Rightarrow8x-2^x-12m=3.2^t\)
Ta được hệ: \(\left\{{}\begin{matrix}3t-2^x-x=3m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12t-4.2^x-4x=12m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)
\(\Rightarrow12t-3.2^x-12x+3.2^t=0\)
\(\Leftrightarrow3.2^t+12t=3.2^x+12x\)
Hàm \(f\left(a\right)=3.2^a+12a\) đồng biến trên R nên đẳng thức xảy ra khi và chỉ khi \(x=t\)
\(\Rightarrow3x-2^x-x=3m\)
\(\Leftrightarrow2x-2^x=3m\)
Khảo sát hàm \(f\left(x\right)=2x-2^x\Rightarrow f'\left(x\right)=2-2^x.ln2=0\)
\(\Rightarrow2^x=\frac{2}{ln2}\Rightarrow x=log_2\left(\frac{2}{ln2}\right)=1-log_2\left(ln2\right)\)
Từ BBT ta thấy để pt có đúng 2 nghiệm thực pb
\(\Leftrightarrow3m< f\left(1-log_2\left(ln2\right)\right)\Rightarrow m\le0\) do m nguyên
Có 20 giá trị nguyên của m
Hơi phân vân 1 xíu về đề bài, đề hỏi thế này nghĩa là hàm cần đạt cả 2 điều: 1. Tồn tại GTNN trên toàn miền R (global minimum) 2. \(\min\limits_Rf\left(x\right)\ge-3\) đúng ko?
Hàm số đã cho xác định trên R nên liên tục trên R
\(\lim\limits_{x\rightarrow+\infty}\frac{2x+m}{\sqrt{2x^2+3}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
\(\lim\limits_{x\rightarrow-\infty}\frac{2x+m}{\sqrt{2x^2+3}}=\frac{2}{-\sqrt{2}}=-\sqrt{2}\)
\(f'\left(x\right)=\frac{2\sqrt{2x^2+3}-\frac{2x\left(2x+m\right)}{\sqrt{2x^2+3}}}{2x^2+3}=\frac{6-2mx}{\left(2x^2+3\right)\sqrt{2x^2+3}}\)
\(\Rightarrow f'\left(x\right)=0\) có tối đa 1 nghiệm nên \(f\left(x\right)\) có tối đa 1 cực trị
- Với \(m>0\Rightarrow f\left(x\right)\) chỉ có cực đại, ko có cực tiểu nên không tồn tại GTNN
- Với \(m=0\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow\) hàm ko tồn tại GTNN
- Với \(m< 0\Rightarrow f\left(x\right)\) đạt cực tiểu tại \(x=\frac{3}{m}\) \(\Rightarrow f\left(x\right)\) đồng thời đạt min trên R tại \(x=\frac{3}{m}\)
\(\Rightarrow f\left(x\right)_{min}=f\left(\frac{3}{m}\right)=-\frac{m^2+6}{\sqrt{3m^2+18}}\ge-3\)
\(\Leftrightarrow m^2+6\le3\sqrt{3m^2+18}\)
\(\Leftrightarrow m^4-15m^2-126\le0\)
\(\Leftrightarrow m^2\le21\Rightarrow-\sqrt{21}< m< 0\)
Kết hợp các trường hợp và lấy m nguyên ta được \(-4\le m< 0\)
Có 4 giá trị nguyên của m thỏa mãn (nếu chỉ cần tìm m sao cho \(f\left(x\right)\ge-3;\forall x\in R\) thì có 15 giá trị nguyên)
Với m = 1, ta có \(\left(C_1\right):y=\frac{x+1}{x-1}\)
a. Gọi d là đường thẳng đi qua P, có hệ số góc k => \(d:y=k\left(x-3\right)+1\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-3\right)+1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm
Thế k vào phương trình thứ nhất, ta được :
\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-3\right)+1\Leftrightarrow x=2\)
\(\Rightarrow k=-2\Rightarrow\) phương trình tiếp tuyến : \(y=-2x+7\)
b. Gọi d là đường thẳng đi qua A, có hệ số góc k : \(d:y=k\left(x-2\right)-1\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=k\left(x-2\right)-1\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm
Thế k vào phương trình thứ nhất, ta được :
\(\frac{x+1}{x-1}=\frac{-2}{\left(x-1\right)^2}\left(x-2\right)-1\Leftrightarrow x=\pm\sqrt{2}\)
* \(x=\sqrt{2}\Rightarrow k=-2\left(3+2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3+2\sqrt{2}\right)x+11+8\sqrt{2}\)
* \(x=-\sqrt{2}\Rightarrow k=-2\left(3-2\sqrt{2}\right)\Rightarrow\) phương trình tiếp tuyến : \(y=-2\left(3-2\sqrt{2}\right)x+11-8\sqrt{2}\)
1) bạn dùng dấu U
điều kiện \(\begin{cases}m\ne0,m>-\frac{1}{4}\\m< 1\end{cases}\)
muons dễ nhìn thì vẽ trục số: 0 -1/4 1 x
=> điều kiện x \(\in\left(-\frac{1}{4};1\right)\backslash\left\{0\right\}\)
a) y= -x4 + 2mx2 – 2m + 1(Cm). Tập xác định: D = R
y ‘ = -4x3 + 4mx = -4x (x2 – m)
- Với m ≤ 0 thì y’ có một nghiệm x = 0 và đổi dấu + sang – khi qua nghiệm này. Do đó hàm số có một cực đại là x = 0
Do đó, hàm số có 2 cực trị tại x = ± √m và có một cực tiểu tại x = 0
b) Phương trình -x4 + 2mx2 – 2m + 1 = 0 luôn có nghiệm x = ± 1 với mọi m nên (Cm) luôn cắt trục hoành.
c) Theo lời giải câu a, ta thấy ngay:
với m > 0 thì đồ thị (Cm) có cực đại và cực tiểu.
a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1
Tập xác định: D = R
y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)
Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R
⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R
⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1
b) Hàm số có một cực đại và một cực tiểu
⇔ phương trình y’= 0 có hai nghiệm phân biệt
⇔ (m-1)2 > 0 ⇔ m≠1
c) f’’(x) = 6x – 6m > 6x
⇔ -6m > 0 ⇔ m < 0
5.
\(y'=1-\frac{4}{\left(x-3\right)^2}=0\Leftrightarrow\left(x-3\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1< 3\left(l\right)\end{matrix}\right.\)
BBT:
Từ BBT ta có \(y_{min}=y\left(5\right)=7\)
\(\Rightarrow m=7\)
3.
\(y'=-2x^2-6x+m\)
Hàm đã cho nghịch biến trên R khi và chỉ khi \(y'\le0;\forall x\)
\(\Leftrightarrow\Delta'=9+2m\le0\)
\(\Rightarrow m\le-\frac{9}{2}\)
4.
\(y'=x^2-mx-2m-3\)
Hàm đồng biến trên khoảng đã cho khi và chỉ khi \(y'\ge0;\forall x>-2\)
\(\Leftrightarrow x^2-mx-2m-3\ge0\)
\(\Leftrightarrow x^2-3\ge m\left(x+2\right)\Leftrightarrow m\le\frac{x^2-3}{x+2}\)
\(\Leftrightarrow m\le\min\limits_{x>-2}\frac{x^2-3}{x+2}\)
Xét \(g\left(x\right)=\frac{x^2-3}{x+2}\) trên \(\left(-2;+\infty\right)\Rightarrow g'\left(x\right)=\frac{x^2+4x+3}{\left(x+2\right)^2}=0\Rightarrow x=-1\)
\(g\left(-1\right)=-2\Rightarrow m\le-2\)
Chọn A