K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có AH ⊥ DC. Do đó khi CD di động, điểm H luôn luôn nhìn đọan thẳng AI dưới một góc vuông. Vậy tập hợp các điểm H là đường tròn đường kính AI nằm trong mặt phẳng ( α ).

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

11 tháng 3 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích tam giác BCD bằng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích này lớn nhất khi AI // CD.

22 tháng 7 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Tam giác ADC vuông tại A nên AD 2 = DC 2 - AC 2  (1)

Tam giác ABC vuông tại A nên BC 2 = AC 2 + AB 2  (2)

Từ (1) và (2) ta suy ra AD 2 + BC 2 = DC 2 + AB 2  (3)

Ta lại có:

AC 2 = DC 2 - AD 2 và BD 2 = AD 2 + AB 2  (4)

DC 2 = 4 r 2 - h 2 ,   AB 2 = 4 h 2  (5)

Từ (4) và (5) ta có:

AC 2 + BD 2 = DC 2 + AB 2 = 4 r 2 - h 2 + 4 h 2 = 4 r 2  (6)

Từ (3) và (6) ta có:  AD 2 + BC 2  =  AC 2 + BD 2  (không đổi)

Cho hai đường thăng \(\Delta\) và \(\Delta'\) chéo nhau nhận AA' làm đoạn vuông góc chung, trong đó A thuộc \(\Delta\)  và A' thuộc \(\Delta'\). Gọi (P) là mặt phẳng qua A vuông góc với \(\Delta'\) và d là hình chiếu vuông góc của \(\Delta\) trên mặt phẳng (P). Đặt AA' = a, góc nhọn giữa \(\Delta\) và d là \(\alpha\). Mặt phẳng (Q) song song với mặt phẳng (P) cắt \(\Delta\) và \(\Delta'\) lần lượt tại...
Đọc tiếp

Cho hai đường thăng \(\Delta\) và \(\Delta'\) chéo nhau nhận AA' làm đoạn vuông góc chung, trong đó A thuộc \(\Delta\)  và A' thuộc \(\Delta'\). Gọi (P) là mặt phẳng qua A vuông góc với \(\Delta'\) và d là hình chiếu vuông góc của \(\Delta\) trên mặt phẳng (P). Đặt AA' = a, góc nhọn giữa \(\Delta\) và d là \(\alpha\). Mặt phẳng (Q) song song với mặt phẳng (P) cắt \(\Delta\) và \(\Delta'\) lần lượt tại M và M'. Gọi \(M_1\) là hình chiếu vuông góc của M trên mặt phẳng (P)

a) Chứng minh 5 điểm A, A', M, M', \(M_1\) cùng nằm trên mặt cầu (S). Xác định tâm O của (S). Tính bán kính của (S) theo \(a,\alpha\) và khoảng cách x giữa hai mặt phẳng (P), (Q) ?

b) Khi x thay đổi, tâm O mặt cầu (S) di động trên đường nào ? Chứng minh rằng khi (Q) thay đổi mặt cầu (S) luôn luôn đi qua một đường tròn cố định

1
20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

22 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

16 tháng 3 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt phẳng (ABO) qua tâm O của hình cầu nên cắt mặt cầu theo đường tròn lớn qua A và B. Gọi I là trung điểm của đoạn AB ta có OI ⊥ AB. Vì AB // OH nên AIOH là hình chữ nhật.

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy AB = 2AI = r

Chú ý: Có thể nhận xét rằng tam giác OAB cân tại O (OA = OB) và có góc ∠ OAB = 60 °  nên OAB là tam giác đều và suy ra AB = OA = OB = r.

22 tháng 10 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có ( α ) là (ABB’). Vì OO’ // ( α ) nên khoảng cách giữa OO’ và ( α ) bằng khoảng cách từ O đến ( α ). Dựng OH ⊥ AB′ ta có OH ⊥ ( α ).

Vậy khoảng cách cần tìm là Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay