K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Ta chọn hệ trục tọa độ sao cho các đỉnh của hình lập phương có tọa độ là:

A(0; 0; 0), B(1;0; 0), D(0; 1; 0)

B’(1; 0 ; 1), D’(0; 1; 1), C’ (1; 1; 1)

Phương trình của hai mặt phẳng (AB’D’) và (BC’D) là :

x + y – z = 0 và x + y – z – 1 = 0

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy (AB’D’) // (BC’D)

26 tháng 5 2017

Hình giải tích trong không gian

4 tháng 2 2018

Ta chọn hệ trục tọa độ sao cho các đỉnh của hình lập phương có tọa độ là:

A(0; 0; 0), B(1;0; 0), D(0; 1; 0)

B’(1; 0 ; 1), D’(0; 1; 1), C’ (1; 1; 1)

d((AB′D′),(BC′D)) = d(A,(BC′D)) = 1/ 3

5 tháng 6 2018

Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12

Chọn hệ trục tọa độ Oxyz có gốc O ≡ A; Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12

⇒ A(0; 0; 0) ; B(1; 0; 0); C(1; 1; 0); D(0; 1; 0).

A’(0; 0; 1); B’(1; 0; 1); C’(1; 1; 1); D’(0; 1; 1).

Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12

⇒ Vectơ pháp tuyến của (AB’D’) là:

Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12

⇒ Vectơ pháp tuyến của (BC’D) là:

Giải bài 10 trang 81 sgk Hình học 12 | Để học tốt Toán 12

⇒ (AB’D’) // (BC’D).

27 tháng 4 2017

Hỏi đáp Toán

1 tháng 4 2017

Giải:

a) Mặt phẳng (Oxy) qua điểm O(0 ; 0 ; 0) và có vectơ pháp tuyến (0 ; 0 ; 1) và là vectơ chỉ phương của trục Oz. Phương trình mặt phẳng (Oxy) có dạng:

0.(x - 0) +0.(y - 0) +1.(z - 0) = 0 hay z = 0.

Tương tự phương trình mặt phẳng (Oyz) là : x = 0 và phương trình mặt phẳng (Ozx) là: y = 0.

b) Mặt phẳng (P) qua điểm M(2; 6; -3) song song với mặt phẳng Oxy nhận (0 ; 0 ; 1) làm vectơ pháp tuyến. Phương trình mặt phẳng (P) có dạng: z +3 = 0.

Tương tự mặt phẳng (Q) qua M và song song với mặt phẳng Oyz có phương trình x - 2 = 0.

Mặt phẳng qua M song song với mặt phẳng Oxz có phương trình y - 6 = 0.

22 tháng 5 2017

Ôn tập chương III

22 tháng 5 2017

Ôn tập chương III

6 tháng 4 2016

\(d\left(A,\left(\alpha\right)\right)=\frac{4}{3}\)

\(\left(\beta\right)\)//\(\left(\alpha\right)\) nên phương trình \(\left(\beta\right)\) có dạng : \(x+2y-2z+d=0,d\ne-1\)

\(d\left(A,\left(\alpha\right)\right)=d\left(A,\left(\beta\right)\right)\)\(\Leftrightarrow\frac{\left|5+d\right|}{3}=\frac{4}{3}\Leftrightarrow\begin{cases}d=-1\\d-9\end{cases}\)\(\Leftrightarrow d=-9\left(d=-1loai\right)\)\(\Rightarrow\left(\beta\right):x+2y-2z-9=0\)