K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

a) () // (ABCD) => {A_{1}{B_{1}}^{}}^{} // AB => {B_{1}}^{} là trung điểm của SB. Chứng minh tương tự với các điểm còn lại

b) Áp dụng định lí Ta-lét trong không gian:
\(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}\).
Do \(A_1A_2=A_2A\) nên : \(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}=1\).
Nên \(B_1B_2=B_2B;C_1C_2=CC_2=D_1D_2=D_2D\).

c) Có hai hình chóp cụt: ABCD.{A_{1}{B_{1}{C_{1}{D_{1}; ABCD.{A_{2}{B_{2}{C_{2}{D_{2}}^{}}^{}}^{}}^{}}^{}}^{}}^{}}^{}

 

31 tháng 3 2017

a) Gọi O = AC ∩ BD; O' là trung điểm A'C' thì OO' // AA'

=> OO'// d // b mà O BD mp (b;d)

=> OO' mp(b;d). Trong mp (b;d) ( mặt phẳng xác định bởi hai đường thẳng song song); d ∩ B'O' = D' là điểm cần tìm

b) Chứng minh mp(a;d) // mp( b;c) , mặt phẳng thứ 3 (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến song song : A'D' // B'C'. Chứng minh tương tự được A'B' // D'C'. Từ đó suy ra A'B'C'D' là hình bình hành

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

Trong các mệnh đề sau đây, mệnh đề nào là đúng ? a) Đường thẳng \(\Delta\) là đường vuông góc chung của hai đường thẳng a và b nếu \(\Delta\) vuông góc với a và  \(\Delta\) vuông góc với b b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a, b chéo nhau. Khi đó đường vuông góc chung \(\Delta\) của a và b luôn luôn vuông góc với (P) c) Gọi \(\Delta\) là đường vuông góc chung của...
Đọc tiếp

Trong các mệnh đề sau đây, mệnh đề nào là đúng ?

a) Đường thẳng \(\Delta\) là đường vuông góc chung của hai đường thẳng a và b nếu \(\Delta\) vuông góc với a và  \(\Delta\) vuông góc với b

b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a, b chéo nhau. Khi đó đường vuông góc chung \(\Delta\) của a và b luôn luôn vuông góc với (P)

c) Gọi \(\Delta\) là đường vuông góc chung của hai đường thẳng chéo nhau a và b thì \(\Delta\) là giao tuyến của hai mặt phẳng \(\left(a,\Delta\right)\) và \(\left(b;\Delta\right)\)

d) Cho hai đường thẳng chéo nhau a và b. Đường thẳng nào đi qua một điểm M trên a đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b

e) Đường vuông góc chung \(\Delta\) của hai đường chéo nhau a và b nằm trong mặt phẳng chứa đường này và vuông góc với đường kia

1
31 tháng 3 2017

a) Sai, đúng là "Đường thẳng Δ là đường thẳng vuông góc chung của hai đường thẳng chéo nhau a và b nếu Δ cắt cả a và b, đồng thời Δ ⊥a và Δ ⊥b"

b) Đúng

c) Đúng

d) Sai

e) Sai

26 tháng 5 2017

a) Đúng

b) Đúng

c) Sai

d) Sai

e) Sai

31 tháng 3 2017

Hỏi đáp Toán

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy.

Cho hai mặt phẳng \(\left(\alpha\right)\&\left(\beta\right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left(\alpha\right)\) ở A và cắt \(\left(\beta\right)\) ở B ta lấy hai điểm cố định \(S_1,S_2\) không thuộc \(\left(\alpha\right)\), \(\left(\beta\right)\). Gọi M là một điểm di động trên \(\left(\beta\right)\). Giả sử các đường thẳng \(MS_1,MS_2\) cắt \(\left(\alpha\right)\) lần lượt...
Đọc tiếp

Cho hai mặt phẳng \(\left(\alpha\right)\&\left(\beta\right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left(\alpha\right)\) ở A và cắt \(\left(\beta\right)\) ở B ta lấy hai điểm cố định \(S_1,S_2\) không thuộc \(\left(\alpha\right)\)\(\left(\beta\right)\). Gọi M là một điểm di động trên \(\left(\beta\right)\). Giả sử các đường thẳng \(MS_1,MS_2\) cắt \(\left(\alpha\right)\) lần lượt tại \(M_1,M_2\)

a) Chứng minh rằng \(M_1M_2\) luon luôn đi qua một điểm cố định

b) Giả sử đường thẳng \(M_1M_2\) cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng 

c) Gọi b là một đường thẳng thuộc mặt phẳng \(\left(\beta\right)\) nhưng không đi qua điểm B và cắt m tại I. Chứng minh rằng khi M di động trên b thì các điểm \(M_1\) và \(M_2\) di động trên hai đường thẳng cố định thuộc mặt phẳng \(\left(\alpha\right)\)

1
25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song