K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

Với a = 1, ta có phương trình:  x 3 + a x 2 - 4 x - 4 = 0

⇒ x 2 (x + 1) – 4(x + 1) = 0 ⇒ ( x 2  – 4)(x + 1) = 0

⇒ (x + 2)(x – 2)(x + 1) = 0

⇒ x + 2 = 0 hoặc x – 2 = 0 hoặc x + 1 = 0

      x + 2 = 0 ⇒ x = -2

      x – 2 = 0 ⇒ x = 2

      x + 1 = 0 ⇒ x = -1

Vậy phương trình có nghiệm: x = -2 hoặc x = 2 hoặc x = -1.

30 tháng 7 2016

a) do x=-2 l;à nghiệm của Pt nên ta thay vào PT . Ta được:

-8+4a+8-4=0

<=> a= 1

vậy a=1

b) với a =1 thay vào PT ta được  pT trở thành :

\(x^3+x^2-4x-4=0\)

<=> \(x^3+2x^2-x^2-2x-2x-4=0\)

<=> \(x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)=0\)

<=> \(\left(x+2\right)\left(x^2-x-2\right)=0\)

<=>\(\left(x+2\right)\left(x+1\right)\left(x-2\right)=0\)

<=>\(\left[\begin{array}{nghiempt}x+2=0\\x-2=0\\x+1=0\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x=2\\x=-2\\x=-1\end{array}\right.\)

vậy nghiệm còn lại là -1 và 2

 

30 tháng 7 2016

a ) Số a phải thõa mãn điều kiện  \(\left(-2\right)^3+a\left(-2\right)^2-4\left(-2\right)-4=0\)

\(\Rightarrow a=1\)

b ) Với \(a=1\) , ta có phương trình \(x^3+x^2-4x-4=0\)

Ta phân tích vế trái của phương trình thành tích như sau :
   \(x^3+x^2-4x-4=\left(x^3+x^2\right)-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)\)

                              \(=\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

Đáp số : \(S=\left\{-1;-2;2\right\}\)

Mình chỉ hướng dẫn như vậy thôi .

a: Thay x=-2 vào pt,ta được:

-8+4a+8-4=0

=>4a-4=0

hay a=1

b: Pt sẽ là \(x^3+x^2-4x-4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

=>(x+1)(x-2)(x+2)=0

hay \(x\in\left\{-1;2;-2\right\}\)

4 tháng 3 2020

a) Phương trình có nghiệm bằng 1 khi \(1+a-4-4=0\)

\(\Rightarrow a=7\)

b) Khi a = 7 thì phương trình trở thành \(x^3+7x^2-4x-4=0\)

\(\Leftrightarrow-x^3-7x^2+4x+4=0\)

\(\Leftrightarrow\left(-x^3-8x^2-4x\right)+\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow-x\left(x^2+8x+4\right)+\left(x^2+8x+4\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(x^2+8x+4\right)=0\)

+) 1 - x = 0 thì x = 1

+) \(x^2+8x+4=0\)

\(\Leftrightarrow x^2+8x+16-12=0\Leftrightarrow\left(x+4\right)^2=12\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=\sqrt{12}\\x+4=-\sqrt{12}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{12}-4\\x=-\sqrt{12}-4\end{cases}}\)

Vậy phương trình có 3 nghiệm \(\left\{1;\pm\sqrt{12}-4\right\}\)

29 tháng 1 2020

a ) Thay x = - 2  vào phương trình x3 + ax2 - ax - 4 = 0, ta được :

( - 2 )3 + a . ( - 2 )2 - a . ( - 2 ) - 4 = 0

\(\Rightarrow\)a = 2

b ) Chưa hiểu đề cho lắm .