Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc=1 khi a=1,b=1,c=1
=>(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3
=(1+1+1)^3-(1+1-1)^3-(1+1-1)^3-(1+1-1)^3
=3^3-1^3-1^3-1^3
=27-1-1-1
=24
1)We have: \(a-b=8\)
\(\Rightarrow\left(a-b\right)^2=64\)
\(\Rightarrow a^2-2ab+b^2=64\)
\(\Rightarrow a^2+2ab+b^2-4ab=64\)
\(\Rightarrow\left(a+b\right)^2=64+4ab=64+4\cdot10=64+40=104\)
Hence: \(\left(a+b\right)^2=104\)
2)We have: \(a+b=8\)
\(\Rightarrow\left(a+b\right)^2=64\)
\(\Rightarrow a^2+2ab+b^2=64\)
\(\Rightarrow a^2-2ab+b^2+4ab=64\)
\(\Rightarrow\left(a-b\right)^2=64-4ab=64-4\cdot10=64-40=24\)
Hence \(\left(a-b\right)^2=24\)
\(A=\left(x+y+z\right)^3-\left(x+y-z\right)^3-\left(x-y+z\right)^3-\left(-x+y+z\right)^3\)
\(=\left(a+b+c\right)^3-a^3-b^3-c^3\)(\(a=-x+y+z,b=x-y+z,c=x+y-z\))
\(=\left(b+c\right)^3+3a\left(a+b+c\right)\left(b+c\right)-\left[\left(b+c\right)^3-3bc\left(b+c\right)\right]\)
\(=3\left(b+c\right)\left(a^2+ab+ac+bc\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=24xyz\)
Ta có :
\(6^{5x+2}=36^{3x-4}\)
\(\Rightarrow6^{5x+2}=\left(6^2\right)^{3x-4}\)
\(\Rightarrow6^{5x+2}=6^{6x-8}\)
=> 5x + 2 = 6x - 8
=> x = 10
Vậy x = 10