Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý bạn lak như thế này hả ???
A = \(2+2^2+2^3+...+2^{20}\)
A = \(\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
A = \(2\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)
A = \(2.15+...+2^{17}.15\)
A = \(15\left(2+...+2^{17}\right)⋮5\left(đpcm\right)\)
Hok tốt
Công thức thể tích hình trụ :
\(V=\pi\cdot r^2\cdot h\)
\(V=3,14\cdot15^2\cdot20\)
\(V=14130\left(cm^3\right)\)
\(A=3+3^2+3^3+3^4+...+3^{10}\)
=> \(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
=> \(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
=> \(A=3.4+3^3.4+...+3^9.4\)
=> \(A=4\left(3+3^3+...+3^9\right)\)chia hết cho 4 (Đpcm)
A = 3 + 32 + 33 + ... + 39 + 310
=> A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 39 + 310 )
=> A = 3( 1 + 3 ) + 33( 1 + 3 ) + ... + 39( 1 + 3 )
=> A = 3 . 4 + 33 . 4 + ... + 39 . 4
=> A = ( 3 + 33 + ... + 39 ) . 4 chia hết cho 4
=> A chia hết cho 4
Vậy...
ta có :
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=13.3+13.3^4+13.3^7+..+13.3^{58}\text{ nên A chia hết cho 13}\)
b. ta có :
\(M=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+..+\left(2^{18}+2^{20}\right)\)
\(=2.5+2^2.5+2^5.5+2^6.5+..+2^{18}.5\text{ nên B chia hết cho 5}\)
x1 + x2 + x3 + x4 + x5 + x6 + .......... + x2015+x2016 + x2016 + x2017
= ( x1 + x2 + x3 + ... + x2016 + x2017 ) + x2016
= 0 + x2016
Mà x1 + x2 + x3 + x4 + x5 + x6 + .......... + x2015+x2016 + x2016 + x2017
= 1 + 1 + 1 + 1 + ... + 1 + 1
= 1009
\(\Rightarrow\)x2016 = 1009
P/s : bạn cố gắng hiểu nha, kết hợp từ hai vế đã được suy ra là tìm được x2016
bn ơi sao lại ra x1 + x2 + x3 + x4 + x5 + x6 + .......... + x2015+x2016 + x2016 + x2017 hả bn
đề sai 1 chút ở số hạng của A
2A=2(1+2+22+...+249)
2A=2+22+...+250
2A-A=(2+22+...+250)-(1+2+22+...+249)
A=250-1 < 250
Vậy...
Lời giải:
Để $A$ là phân số thì $2n-4\neq 0$
$\Leftrightarrow n\neq 2$
Với $n$ nguyên, để $A$ nguyên thì:
$2n+2\vdots 2n-4$
$\Rightarrow (2n-4)+6\vdots 2n-4$
$\Rightarrow 6\vdots 2n-4$
$\Rightarrow 3\vdots n-2$
$\Rightarrow n-2\in\left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{3; 1; 5; -1\right\}$