Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(1< 2\Rightarrow\sqrt{1}< \sqrt{2}\Rightarrow1+1< \sqrt{2}+1\Rightarrow2< \sqrt{2}+1\)
c, \(4>3=>\sqrt{4}>\sqrt{3}=>\sqrt{4}-1>\sqrt{3}-1\Rightarrow1>\sqrt{3}-1\)
d, \(16>11=>\sqrt{16}>\sqrt{11}\Rightarrow4>\sqrt{11}=>4.\left(-3\right)< \sqrt{11}.\left(-3\right)\)
\(=>-12< -3.\sqrt{11}\)
Đặt A = \(\sqrt{ }\)2003 + \(\sqrt{ }\)2005 ; B = 2\(\sqrt{ }\)2004
A² = 2003 + 2005 + 2\(\sqrt{ }\)(2003.2005)
= 4008 + 2\(\sqrt{ }\)[(2004-1)(2004+1)]
= 4008 + 2\(\sqrt{ }\)(2004² - 1) < 2.2004 + 2\(\sqrt{ }\)(2004²) = 4.2004 = B²
\(\Rightarrow\) A < B
a) \(2\sqrt[3]{3}=\sqrt[3]{2^3}.\sqrt[3]{3}=\sqrt[3]{2^3.3}=\sqrt[3]{24}\)
Ta có : \(24>23\), nên \(\sqrt[3]{24}>\sqrt[3]{23}\)
Vậy \(2\sqrt[3]{3}>\sqrt[3]{23}\)
b) Ta có :
\(11=\sqrt[3]{11^3}=\sqrt[3]{1331}\)
Từ đó suy ra \(33< 3\sqrt[3]{1333}\)
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005
được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)
\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)
Ta có
\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)
và \(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004+\sqrt{2003}}}\)
Quy về so sánh
\(\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\) với \(\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)
Khi đó ,ta thấy ngay ở biểu thức thứ nhất lớn hơn mẫu ở biểu thức thứ hai ,các số này đều dương nên suy ra
\(\sqrt{2005}-\sqrt{2004}< \sqrt{2004}-\sqrt{2003}\)
Ta có: 1 < 2 ⇒ 1 < 2 ⇒ 1 < 2
Suy ra: 1 + 1 < 2 + 1
Vậy 2 < 2 + 1
2 + 3 và 3
Ta có: 2 + 3 2 = 2 2 . 3 2 =2.3=6
2 2 =4
Vì 6 > 4 nên 2 . 3 2 > 2 2
Suy ra: 2 . 3 > 2 ⇒ 2. 2 . 3 > 2.2 ⇒ 5 + 2. 2 . 3 > 4 + 5
⇒ 5 + 2. 2 . 3 > 9 ⇒ ( √2 + √3)2 > 9
⇒ 2 + 3 2 > 3 2
Vậy 2 + 3 > 3
2 + 3 và 10
Ta có: 2 + 3 2 = 2 + 2 6 + 3 = 5 + 2 6
10 2 = 10 = 5 + 5
So sánh 26 và 5:
Ta có: 2 6 2 = 2 2 . 6 2 = 4.6 = 24
5 2 = 25
Vì 2 6 2 < 5 2 nên 2 6 < 5
Vậy 5 + 2 6 < 5 + 5 ⇒ 2 + 3 2 < 10 2 ⇒ 2 + 3 < 10
Ta có: 11 < 16 ⇒ 11 < 16 ⇒ 11 < 4
Suy ra: -3. 11 > -3.4
Vậy -3 11 > -12
Ta có: 4 > 3 ⇒ 4 > 3 ⇒ 2 > 3
Suy ra: 2 – 1 > 3 – 1
Vậy 1 > 3 – 1