Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(x\ne3\) để mẫu khác 0
Vì 2 phân số có cùng mẫu nên
\(\left|x-5\right|=\left|x-1\right|\)
*TH1: \(\begin{cases}x-5\ge0\\x-1\ge0\end{cases}\)
\(x-5=x-1\)
\(0x=4\)
KHông có giá trị x
*TH2:
\(\begin{cases}x-5\le0\\x-1\le0\end{cases}\)
\(-\left(x-5\right)=-\left(x-1\right)\)
\(\Rightarrow-x-5=-x+1\)
\(0x=-4\)
Không có giá trị x
*TH3:
\(\begin{cases}x-1\ge0\\x-5\le0\end{cases}\) \(\Rightarrow\begin{cases}x\ge1\\x\le5\end{cases}\)
\(-\left(x-5\right)=x-1\)
\(\Rightarrow5+1=2x\)
\(\frac{6}{2}=x\)
\(x=3\)
Mà \(x\ne3\)
nên ko có giá trị thỏa mãn
vậy không có giá trị x nguyên thỏa mãn với đề bài
|x-2|.y+|x-2|-17=0
<=>|x-2|.y+|x-2|=17
<=>|x-2|.(y+1)=17=1.17=17.1=(-1).(-17)=(-17).(-1)
Ta có: |x-2| và y+1 là ước của 17
Chú ý rằng |x-2| >= 0 với mọi x nên |x-2| là ước dương của 17,từ đó suy ra y+1 cũng là ước dương của 17
=>|x-2|.(y+1)=1.17=17.1
+)|x-2|=1 và y+1=17
=>x-2=-1 hoặc x-2=1 và y+1=17
=>x=1 hoặc x=3 và y=16
+)|x-2|=17 và y+1=1
=>x-2=-17 hoặc x-2=17 và y+1=1
=>x=-15 hoặc x=19 và y=0
Vậy ..........................
Ta có \(A=\left|x-2013\right|+\left|x-1989\right|\)
hay \(A=\left|2013-x\right|+\left|x-1989\right|\ge\left|2013-x+x-1989\right|\)
suy ra \(24\le A\le24\)
\(\Rightarrow A=24\)
vì x-2013<x-1989
Do đó ta xét các trường hợp
TH1 \(\begin{cases}x-2013\ge0\\x-1989\ge0\end{cases}\) \(\Rightarrow\begin{cases}x\ge2013\\x\ge1989\end{cases}\)
khi đó \(x-2013+x-1989=24\)
=> x=2013 (thỏa mãn)
TH2: \(\begin{cases}x-2013\le0\\x-1989\le0\end{cases}\) \(\Rightarrow\begin{cases}x\le2013\\x\le1989\end{cases}\)
khi đó: \(-\left(x-2013\right)-\left(x-1989\right)=24\)
=>x=1989 (thỏa mãn)
*TH3 \(\begin{cases}x-1989\ge0\\x-2013\le0\end{cases}\) \(\Rightarrow\begin{cases}x\ge1989\\x\le2013\end{cases}\)
\(\Rightarrow1989\le x\le2013\)
\(-\left(x-2013\right)+x-1989=24\)
\(0x+2013-1989=24\)
\(0x=0\)
có vô số giá trị \(x\in Z\)
Mà \(1989\le x\le2013\)
\(\Rightarrow x\in\left\{1989;1990;...;2013\right\}\)
Vậy có 25 giá trị x
15.
Ta có \(a+b+c+ab+bc+ac=6\)
Mà \(ab+bc+ac\le\left(a+b+c\right)^2\)
=> \(\left(a+b+c\right)^2+\left(a+b+c\right)-6\ge0\)
=> \(a+b+c\ge3\)
\(A=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\ge3\)(ĐPCM)
Bài 18, Đặt \(\left(a^2-bc;b^2-ca;c^2-ab\right)\rightarrow\left(x;y;z\right)\) thì bđt trở thành
\(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)
Vì \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)nên ta đi chứng minh \(x+y+z\ge0\)
Thật vậy \(x+y+z=a^2-bc+b^2-ca+c^2-ab\)
\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(đúng)
Tóm lại bđt được chứng minh
Dấu "=": tại a=b=c
A=\(\frac{2014}{2014^a}+\frac{2014}{2014^b}\)=B=\(\frac{2013}{2015^a}\)+\(\frac{2015}{2013^b}\)
Ta có: 2014/\(2014^a\)+2014/2014^b= 2013/2014^a + 1/2014^a +2015/2014^a - 1/2014^a
=(2013/2014^a + 2015/2014^b) + ( 1/2014^a + 1/2014^b)
= B + (1/2014^a + 1/2014^b)
*Nếu a=b thì A=B
*Nếu a>b thì (1/2014^a + 1/2014^b) >0
\(\Rightarrow\) A< B
*Nếu a<b thì (1/2014^a + 1/2014^b)>0
\(\Rightarrow\) A>B
Xét tử \(\left|4-x\right|+\left|x+2\right|\ge0\)
Xét mẫu \(\left|x+5\right|+\left|x-3\right|\ge0\)
Do đó \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}\ge0\)
Nhưng đề bài cho \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}=-\frac{1}{2}<0\) nên không có giá trị nào của x thỏa mãn.
3/x+y/3=5/6
<=>3/x=5/6-y/3
<=>3/x=5/6-2y/6=(5-2y)/6
<=>x.(5-2y)=3.6=18
sau đó lập bảng , tìm x,y
Vì x là số nguyên âm=> x<0=>x2015<0( luỹ thừa với số mũ lẻ) (1)
Mà (-2)2014>0( luỹ thừa với số mũ chẵn) (2)
từ (1);(2)=> x2015 # (-2)2014
=> ko có số nguyên âm x nào thoả mãn đề bài
Không có số nào thỏa mãn