Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(A=\sin10+\sin40-\cos50-\cos80\)
\(\Leftrightarrow A=\cos80+\cos50-\cos50-\cos80\)
\(\Leftrightarrow A=0\)
Vậy ...
\(B=\cos15+\cos25-\sin65-\sin75\)
\(\Leftrightarrow B=\sin75+\sin65-\sin65-\sin75\)
\(\Leftrightarrow B=0\)
Vậy ...
\(C=\dfrac{\tan27.\tan63}{\cot63.\cot27}\)
\(\Leftrightarrow C=\dfrac{\tan27.\tan63}{\tan27.\tan63}\)
\(\Leftrightarrow C=1\)
Vậy ...
\(D=\dfrac{\cot20.\cot45.\cot70}{\tan20.\tan45.\tan70}\)
\(\Leftrightarrow D=\dfrac{\cot20.\cot45.\cot70}{\cot70.\cot45.\cot20}\)
\(\Leftrightarrow D=1\)
Vậy ...
Bài 1:
b: \(\cos\alpha=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)
\(\tan\alpha=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)
Bài 2:
\(\sqrt{ab}< =\dfrac{a+b}{2}\)
\(\Leftrightarrow a+b>=2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
Ta có : \(cos30^0=sin60^0\)
\(cos15^0=sin75^0\)
Sắp xếp : \(sin30^0,sin40^0,sin60^0,sin75^0,sin89^0.\)
Ta có: \(\cos30^o=\sin60^0\), \(\cos15^0=\sin75^0\)
mà \(\sin30^0< \sin40^0< \sin60^0< \sin75^0< \sin89^0\)
\(\Leftrightarrow\sin30^0< \sin40^0< \cos60^0< \cos75^0< \sin89^0\)
a) sin230 - cos670 = sin230 - sin230 =0
b)sin100 + sin400 - cos500 - cos800 = sin100 + sin400 - sin400 - sin100 = (sin100 - sin100) +(sin400 - sin400) = 0
a: \(\sin25^0< \sin70^0\)
b: \(\cos40^0>\cos75^0\)
c: \(\sin38^0=\cos52^0< \cos27^0\)
d: \(\sin50^0=\cos40^0>\cos50^0\)
bạn phải ns rõ là bài này có được dùng máy tính hay ko .
mình làm theo cách ko bấm máy nhé
Ta có : khi góc \(\alpha\)tăng từ 0 -> 90 độ thì : \(\hept{\begin{cases}\sin\alpha\\\tan\alpha\end{cases}}\)tăng ; \(\hept{\begin{cases}\cos\alpha\\\cot\alpha\end{cases}}\)tăng
a) \(\sin15^o=\cos75^o>\cos80^o\) ;\(\tan25^o=\cot65^o>\cot75^o\)
\(\cot75^o=\tan15^o=\frac{\sin15^o}{\cos15^o}>\sin15^o\)( vì \(0< \cos15^o< 1\) )
tóm lại : \(\cos80^o< \sin15^o< \cot75^o< \tan25^o\)
b) tương tự
a) \(sin40^o-cos50^o=cos50^o-cos50^o=0\)
b) \(sin^230^o+sin^240^o+sin^250^o+sin^260^o\)
= \(sin^230^o+sin^260^o+sin^240^o+sin^250^o\)
= \(sin^230^o+cos^230^o+sin^240^o+cos^240^o\)
= \(1+1=2\)
a) Gợi ý: Hai góc phụ nhau thì có sin góc này bằng cos góc kia.
vd: \(sin30^o=cos70^o\)
b) Gợi ý: \(sin^2+cos^2=1\)
Ta có: \(\sin10^0+\sin40^0-\cos50^0-\cos80^0\)
\(=\left(\sin10^0-\cos80^0\right)+\left(\sin40^0-\cos50^0\right)\)
\(=\left(\cos80^0-\cos80^0\right)+\left(\cos50^0-\cos50^0\right)\)
\(=0\)
\(\sin10^0+\sin40^0-\cos50^0-\cos80^0=0\)0