Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{3-x}{x+3}\times\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\) \(\left(ĐKXĐ:x\ne\pm3\right)\)
\(A=\left(\frac{3-x}{x+3}\times\frac{x+3}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left[\frac{\left(3-x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right]:\frac{3x^2}{x+3}\)
\(A=\left(\frac{9-3x}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)
\(A=\frac{-3}{x+3}\times\frac{x+3}{3x^2}\)
\(A=\frac{-1}{x^2}\)
Ta có :\(x^2+x-6=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(L\right)\\x=2\left(tm\right)\end{cases}}\)
\(\Rightarrow A=\frac{-1}{2^2}\)
\(A=\frac{-1}{4}\)
Không chép lại đề nhé:
\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)
\(=\frac{x+3}{x-3}\)
b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)
c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)
Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay
(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)
Thế vào sẽ tìm được A
ĐKXĐ thì b tự làm nhé
\(A=\frac{x^3+2x^2+x}{x^3+x}=\frac{x^3+3x}{x^2+x}=\frac{x^2+3}{x^2+1}\)
\(B=\frac{x^2-9}{3-x}=\frac{x^2-9}{-\left(3-x\right)}=\frac{\left(x-3\right)\left(x+3\right)}{x+3}=x-3\)
Em mới lớp 7 nên rút gọn bừa ạ !!!
\(A=\frac{x^3+2x^2+x}{x^3+x}=\frac{\left(x^3+x\right)+2x^2}{x^3+x}=\frac{x^3+x}{x^3+x}+\frac{2x^2}{x^3+x}=\frac{2x^2}{x^3+x}\)\(=\frac{x^2.x.x}{x.\left(x^2+1\right)}=\frac{x^2.x}{x^2+1}\)
Lm thử sức thôi ạ !!!
a, +) ĐKXĐ: \(x\ne-3,x\ne2\)
\(A=\frac{2x+6}{\left(x+3\right)\left(x-2\right)}=\frac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{2}{x-2}\)
+) ĐKXĐ: \(x^2-6x+9\ne0\Leftrightarrow\left(x-3\right)^2\ne0\Leftrightarrow x\ne3\)
\(B=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)
b, +)Để A=0 <=> \(\frac{2}{x-2}=0\Leftrightarrow2=0\left(loại\right)\)
Vậy k có x thỏa mãn để A=0
+)Để B=0 <=> \(\frac{x+3}{x-3}=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\left(TMĐK\right)\)
Vậy x=-3 thì B=0
Chọn đáp án A