Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{20}\cdot\sqrt{72}\cdot\sqrt{4,9}=\sqrt{20\cdot72\cdot4,9}=\sqrt{2\cdot10\cdot72\cdot4,9}\\ =\sqrt{144\cdot49}=\sqrt{144}\cdot\sqrt{49}=12\cdot7=84\)
Bài 2:
a) \(\sqrt{3a^3}\cdot\sqrt{12a}=\sqrt{3a^3\cdot12a}=\sqrt{36a^4}=6a^2\)
b) \(\sqrt{2a\cdot32ab^2}=\sqrt{64a^2b^2}=8ab\)
a) \(\sqrt{3a^3}\cdot\sqrt{12a}=\sqrt{3a^3\cdot12a}=\sqrt{36a^4}=6a^2\)
b) \(\sqrt{2a\cdot32ab^2}=\sqrt{64a^2b^2}=8ab\)
\(\sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=3\sqrt{9a^2}=3.3.a=9a\) ( vì \(a\ge0\) )
a) Ta có:
\(5\sqrt{a}-4b\sqrt{25a^3}+5a\sqrt{16ab^2}-2\sqrt{9a}\)
\(=5\sqrt{a}-4b.5a\sqrt{a}+5a.4b\sqrt{a}-2.3\sqrt{a}\)
\(=5\sqrt{a}-20ab\sqrt{a}+20ab\sqrt{a}-6\sqrt{a}\) \(=-\sqrt{a}\)
b) Ta có:
\(5a\sqrt{64ab^3}-\sqrt{3}.\sqrt{12a^3b^3}+2ab\sqrt{9ab}\) \(-5b\sqrt{81a^3b}\)
\(=5a.8b\sqrt{ab}-\sqrt{3.12a^3b^3}+2ab.3\sqrt{ab}\) \(-5b.9a\sqrt{ab}\)
\(=40ab\sqrt{ab}-6ab\sqrt{ab}+6ab\sqrt{ab}-45ab\)\(\sqrt{ab}\)
\(=-5ab\sqrt{ab}\)
A=\(\dfrac{1}{3a-2}\sqrt{\left(4-12a+9a^2\right)49a^2}=\dfrac{1}{3a-2}\sqrt{\left(2-3a\right)^249a^2}\)
\(A=7a\)
Câu 1:
\(x^2-19=x^2-\left(\sqrt{19}^2\right)\left(x+\sqrt{19}\right)\)
Câu 2:
\(\sqrt{8t}.\sqrt{32t^3}=\sqrt{8t.32t^3}=\sqrt{\left(16.t^2\right)^2}=16.t^2\)
Câu 3 :
\(\sqrt{a^8\left(4-a\right)^2}=\sqrt{a.8}.\sqrt{\left(4-a\right)^2}=a^4\left|4-a\right|\)
( do \(a\le4\))
câu 1
\(x^2-19=\left(x-\sqrt{19}\right)\left(x+\sqrt{19}\right)\)
câu 2
\(\sqrt{8t}.\sqrt{32t^3}=\sqrt{8t.32t^3}=\sqrt{256t^4}=\sqrt{\left(16t^2\right)^2}=16t^2\)
câu 3
\(\sqrt{a^8\left(4-a\right)^2}=\sqrt{\left[a^4\left(4-a\right)\right]^2}=a^4\left(4-a\right)=4a^4-a^5\)
nếu mk sai thì bỏ qua nha <3
a: \(=4x-4x\sqrt{2}-2x\sqrt{2}+2x=6x-6x\sqrt{2}\)
b: \(=6x-4\sqrt{xy}+3\sqrt{xy}-2y=6x-\sqrt{xy}-2y\)
\(a,\left(4\sqrt{x}-\sqrt{2x}\right)\left(\sqrt{x}-\sqrt{2x}\right)=4x-4\sqrt{2}x-\sqrt{2}x+2x=6x-5\sqrt{2}x=\left(6-5\sqrt{2}\right)x\)
\(b,\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)=6x-4\sqrt{xy}+3\sqrt{xy}-2y=6x-4\sqrt{xy}-2y\)
\(a,5\sqrt{4a^6}-3a^3=5\left|2a^3\right|-3a^2=-10a^3-3a^3=-13a^3\)(vì a<0)
b)\(\sqrt{9a^4}+3a^2=\left|3a^2\right|+3a^2=3a^2+3a^2=6a^2\)
c)\(\frac{\sqrt{x^2-10x+25}}{x-5}=\frac{\left|x-5\right|}{x-5}\)
Với x-5>0 => x>5 => \(\frac{\sqrt{x^2-10x+25}}{x-5}=1\)
Với x-5<0=>x<5 =>\(\frac{\sqrt{x^2-10x+25}}{x-5}=-1\)
√(3a3 ).√12a = √(3a3.12a) = √(36a4 )
= √((6a2 )2 ) = 6a2 (do a2 ≥ 0)