Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3
Ta có :P không chia hết cho 2
=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)
Mặt khác:P không chia hết cho 3
Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3
Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)
Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24
\(B=\left(1-\frac{1}{12}\right)\left(1-\frac{1}{13}\right)\left(1-\frac{1}{14}\right)\)
\(=>B=\frac{11}{12}\cdot\frac{12}{13}\cdot\frac{13}{14}\)
\(=>B=\frac{11\cdot12\cdot13}{12\cdot13\cdot14}=\frac{11}{14}\)
a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
b) b = a - c => b + c = a
\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)
Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)
Xin lỗi mình viết nhầm
A = 2 + 22 + 23 + 24 + ... + 2199 + 2200
A = ( 2 + 22 + 23 + 24 ) + ... + ( 2197 + 2198 + 2199 + 2200 )
A = 2 . ( 1 + 2 + 22 + 23 ) + ... + 2197 ( 1 + 2 + 22 + 23 )
A = 2 . 15 + ... + 2197 . 15
A = ( 2 + ... + 2197 ) .15 \(\Rightarrow A⋮15\)