K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

\(P\left(x\right)=2x^4-7x^3-2x^2+13x+6\)

           \(=2x^4-4x^3-3x^3+6x^2-8x^2+16x-3x+6\)

           \(=2x^3\left(x-2\right)-3x^2\left(x-2\right)-8x\left(x-2\right)-3\left(x-2\right)\)

           \(=\left(2x^3-3x^2-8x-3\right)\left(x-2\right)\)

           \(=\left[2x^3-6x^2+3x^2-9x+x-3\right].\left(x-2\right)\)

           \(=\left[2x^2\left(x-3\right)+3x\left(x-3\right)+x-3\right].\left(x-2\right)\)

           \(=\left[\left(2x^2+3x+1\right)\left(x-3\right)\right]\left(x-2\right)\)

           \(=\left(2x+1\right)\left(x+1\right)\left(x-3\right)\left(x-2\right)\)

30 tháng 1 2017

a, P(x)=2x4-6x3-x3+3x2-5x2+15x-2x+6

=2x3(x-3)-x2(x-3)-5x(x-3)-2(x-3)

=(x-3)(2x3-x2-5x-2)

=(x-3)(2x3-4x2+3x2-6x+x-2)

=(x-3)[2x2(x-2)+3x(x-2)+(x-2)]

=(x-3)(x-2)(2x2+3x+1)=(x-3)(x-2)(x+1)(2x+1)

b,P(x)=(x-3)(x-2)(x+1)(2x-2+3)

=(x-3)(x-2)(x+1)[2(x-1)+3]

=2(x-3)(x-2)(x-1)(x+1)+3(x-3)(x-2)(x+1)

vì x-3,x-2 là 2 SN liên tiếp nên tích của chúng chia hết cho 2 => (x-3)(x-2)(x+1) chia hết cho 2

=>3(x-3)(x-2)(x+1) chia hết cho 6

lập luận đc (x-3)(x-2)(x-1) là tích 3 SN liên tiếp nên chia hết cho 2 và 3 =>(x-3)(x-2)(x-1) cũng chia hết cho 6 

Tóm lại P(x) chia hết cho 6 với mọi x \(\in\) Z 

24 tháng 1 2016

62462

 

 

 

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

a)

\(P=2x^4-7x^3-2x^2+13x+6\)

\(=2x^3(x+1)-9x^2(x+1)+7x(x+1)+6(x+1)\)

\(=(x+1)(2x^3-9x^2+7x+6)\)

\(=(x+1)[2x^2(x-2)-5x(x-2)-3(x-2)]\)

\(=(x+1)(x-2)(2x^2-5x-3)\)

\(=(x+1)(x-2)[2x(x-3)+(x-3)]\)

\(=(x+1)(x-2)(x-3)(2x+1)\)

b)

\(x-3; x-2\) là hai số nguyên liên tiếp nên

\((x-2)(x-3)\vdots 2\Rightarrow P(x)=(x+1)(x-2)(x-3)(2x+1)\vdots 2\)

Lại có, xét các TH của $x$ như sau:

Nếu \(x=3k\Rightarrow x-3=3k-3\vdots 3\Rightarrow P(x)\vdots 3\)

Nếu \(x=3k+1\Rightarrow 2x+1=2(3k+1)+1=6k+3\vdots 3\Rightarrow P(x)\vdots 3\)

Nếu \(x=3k+2\Rightarrow x-2=3k\vdots 3\Rightarrow P(x)\vdots 3\)

Vậy \(P(x)\vdots 3\)

Thấy $P(x)$ chia hết cho cả 2 và 3 mà $2,3$ nguyên tố cùng nhau nên $P(x)$ chia hết cho $6$

Do đó ta có đpcm.

\(=2x^4-6x^3-x^3+3x^2-5x^2+15x-2x+6\)

\(=2x^3\left(x-3\right)-x^2\left(x-3\right)-5x\left(x-3\right)-2\left(x-3\right)\)

\(=\left(x-3\right)\left(2x^3-x^2-5x-2\right)\)

\(=\left(x-3\right)\left(2x^3-4x^2+3x^2-6x+x-2\right)\)

\(=\left(x-3\right)\left[2x^2\left(x-2\right)+3x\left(x-2\right)+\left(x-2\right)\right]\)

\(=\left(x-3\right)\left(x-2\right)\left(2x^2+3x+1\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(2x+1\right)\)

9 tháng 12 2016

\(A=2x^3+13x^2+13xy+2x^2y+21\left(x+y\right)\)

=> \(A=2x^2\left(x+y\right)+13x\left(x+y\right)+21\left(x+y\right)\)

=> \(A=\left(x+y\right)\left(2x^2+13x+21\right)\)

=> \(A=\left(x+y\right)\left(2x^2+6x+7x+21\right)\)

=> \(A=\left(x+y\right)\left[2x\left(x+3\right)+7\left(x+3\right)\right]\)

=> \(A=\left(x+y\right)\left(2x+7\right)\left(x+3\right)\)

9 tháng 12 2016

A=2x^3+13x^2+13xy+2x^2y+21(x+y)

=2x^3+2x^2y+13x^2+13xy+21(x+y)

=2x^2(x+y)+13x(x+y)+21(x+y)

=(x+y)(2x^2+13x+21)

=(x+y)(2x^2+6x+7x+21)

=(x+y)[2x(x+3)+7(x+3)]

=(x+y)(x+3)(2x+7)