K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

Đáp án D

Lời giải:

Đặt  t = x − 512 1024 − x 8 ≥ 0 , ta có

t 4 = x − 512 1024 − x ≤ x − 512 + 1024 − x 2                                                                                                 = 256 ⇒ 0 ≤ t ≤ 4

Với t = 4 thì ta tìm được 1 giá trị của x = 768

Với 0 ≤ t ≤ 4  thì ta tìm được 2 giá trị của x (Khi đó phương trình của Định lý Viét đảo có 2 nghiệm phân biệt)

 

Bình phương 2 vế phương trình đã cho, ta được

(sử dụng máy tính).

Từ đó ta có 2 nghiệm x thỏa mãn 

Do đó phương trình đã cho có 3 nghiệm.

27 tháng 1 2018

Chọn đáp án C.

11 tháng 7 2017

Đáp án C

x - 512 + 1024 - x = 16 + 4 x - 512 1024 - x 8 (*),  512 ≤ x ≤ 1024

t = x - 512 1024 - x 8 ⇒ t 4 = x - 512 1024 - x     ≤ x - 512 + 1024 - x 2 = 256 ⇒ 0 ≤ t ≤ 4   t = 4 ⇒ x = 768 0 ≤ t ≤ 4  

=> Bình phương hai vế (*):

( t - 4 ) t 3 + 4 t 2 + 8 t - 32 = 0 ⇔ [ x ≈ 512 , 18 x ≈ 1023 , 82

 

20 tháng 4 2019

Đáp án C

x − 512 + 1024 − x = 16 + 4 ( x − 512 ) ( 1024 − x ) 8     ( * ) , ( 512 ≤ x ≤ 1024 ) t = ( x − 512 ) ( 1024 − x ) 8 ⇒ t 4 = ( x − 512 ) ( 1024 − x ) ≤ x − 512 + 1024 − x 2 = 256 ⇒ 0 ≤ t ≤ 4 ⋅ t = 4 ⇒ x = 768

0 ≤ t < 4 ⇒ bình phương 2 vế (*):

⇒ ( t − 4 ) ( t 3 + 4 t 2 + 8 t − 32 ) = 0 ⇔ t ≈ 1 , 76 ⇔ x ≈ 512 , 18 x ≈ 1023 , 82

1 tháng 2 2016

a) ĐK: x-1 khác 0 và x+1 khác 0

<=> x khác 1 và x khác -1

b) ĐK: x-2 khác 0

<=> x khác 2

1 tháng 2 2016

à thui câu 1 k cần lm lm hộ câu 2 nha

24 tháng 2 2016

*x2+bx+c=0

\(\Delta=b^2-4c=b^2-4.\left(2b-4\right)=b^2-8b+16=\left(b-4\right)^2\)=>\(\sqrt{\Delta}=\left|b-4\right|\)

Với (b-4)2=0 =>b=4 =>c=4

PT có 1 nghiệm kép: \(x_1=x_2=-2\)

Với\(\Delta=\) (b-4)2>0,PT có 2 nghiệm pb: \(x_1=\frac{-b+\left|b-4\right|}{2};x_2=\frac{-b-\left|b-4\right|}{2}\)

Với b>4 thì: \(x_1=-2;x_2=\frac{-2b+4}{2}=-b+2\)

Với b<0 thì: x1=-b+2 ; x2=-2

Vậy khi c=2b-4 và b tùy ý thì PT: x2+bx+c=0 luôn có 1 nghiệm nguyên là -2

15 tháng 6 2019

\(a,\)\(xy+3x+2y=6\)

\(\Rightarrow xy+3x+2y+6=6+6\)

\(\Rightarrow x\left(y+3\right)+2\left(y+3\right)=12\)

\(\Rightarrow\left(y+3\right)\left(y+2\right)=12\)

\(TH1\):\(\orbr{\begin{cases}y+3=1\\x+2=12\end{cases}\Rightarrow\orbr{\begin{cases}y=-2\\x=10\end{cases}}}\)

\(TH2\)\(\orbr{\begin{cases}y+3=-1\\x+2=-12\end{cases}\Rightarrow\orbr{\begin{cases}y=-4\\x=-14\end{cases}}}\)

\(TH3\)\(\orbr{\begin{cases}y+3=12\\x+2=1\end{cases}\Rightarrow\orbr{\begin{cases}y=9\\x=-1\end{cases}}}\)

\(TH4\)\(\orbr{\begin{cases}y+3=-12\\x+2=-1\end{cases}\Rightarrow\orbr{\begin{cases}y=-15\\x=-3\end{cases}}}\)

\(TH5\)\(\orbr{\begin{cases}y+3=2\\x+2=6\end{cases}\Rightarrow\orbr{\begin{cases}y=-1\\x=4\end{cases}}}\)

\(TH6\)\(\orbr{\begin{cases}y+3=6\\x+2=2\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}}\)

\(TH7\)\(\orbr{\begin{cases}y+3=-2\\x+2=-6\end{cases}\Rightarrow\orbr{\begin{cases}y=-5\\x=-8\end{cases}}}\)

\(TH8\)\(:\)\(\orbr{\begin{cases}y+3=-6\\x+2=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=-9\\x=-4\end{cases}}}\)

\(TH9\)\(\orbr{\begin{cases}y+3=3\\x+2=4\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\x=2\end{cases}}}\)

\(TH10\)\(\orbr{\begin{cases}y+3=4\\x+2=3\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=1\end{cases}}}\)

\(TH11\)\(\orbr{\begin{cases}y+3=-3\\x+2=-4\end{cases}\Rightarrow\orbr{\begin{cases}y=-6\\x=-6\end{cases}}}\)

\(TH12\)\(\orbr{\begin{cases}y+3=-4\\x+2=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=-7\\x=-5\end{cases}}}\)

KL...

15 tháng 6 2019

chưa thấy bạn nào làm bài 3 , thì em làm ạ :))

Giả sử x, y là các số nguyên thoă mãn phương trình đã cho .

\(4x+5y=2012\Leftrightarrow5y=2012-4y\Leftrightarrow5y=4\left(503-y\right).\)(1)

Dễ thấy vế phải của (1) chia hết cho 4 \(\Rightarrow5y⋮4\)mà (5;4)=1 nên y chia hết cho 4.

Đặt \(y=4t\left(t\in Z\right)\)thế vào phương trình đầu ta được : \(4x+20t=2012\Leftrightarrow\hept{\begin{cases}x=503-5t\\y=4t\end{cases}.}\)(*)

Thử thay vào các biểu thức của x, y ở (*) ta thấy thỏa mãn 

Vậy phương trình có vô số nghiệm \(\left(x;y\right)=\left(503-5t;4t\right)\forall t\in Z.\)