Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 2x2 + 10x - 15
= 2x2 + 10x - \(\frac{50}{4}-\frac{5}{2}\)
= 2(x2 + 5x - \(\frac{25}{4}\)) - \(\frac{5}{2}\)
= 2(x - \(\frac{5}{2}\) )2 - \(\frac{5}{2}\)
Mà ; 2(x - \(\frac{5}{2}\) )2 \(\ge0\forall x\)
Nên : 2(x - \(\frac{5}{2}\) )2 - \(\frac{5}{2}\) \(\ge-\frac{5}{2}\forall x\)
Vậy Amin = \(-\frac{5}{2}\) , dấu bằng xảy ra khi x = \(\frac{5}{2}\)
a) x2+20x+*
=> x2 +2 x 5x2+52
= (x+5)2
b) 16x2+24xy+*
=> (4x)2+2 x 4x x 3+32
= (4x + 3)2
c) y2 -*+49
=> y2 - 2y72+72
= (y-7)2
d) * - 42xy + 49y2
= (3x)2 + 2 x 7y3x + (7y)2
= (3x+7y)2
Câu trả lời là bóng trắng, xác suất thắng \(100\%\). Lí do là vì dù thế nào thì 2 quả bóng cuối cùng đều là trắng cả.
Giải thích:
Trong các khả năng lấy ra - bỏ vào như bảng thì số bóng trắng hoặc giữ nguyên hoặc giảm 2 quả.
Do lúc đầu số bóng trắng là chẵn nên số bóng trắng sẽ luôn chẵn.
Mặt khác, khi số bóng trắng xuống còn \(2\) bóng thì số bóng trắng không giảm được nữa.
Do đó số bóng trắng sẽ luôn là \(2\) đến cuối cùng.
\(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(=\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)
\(=\left(x^4-x^2+1\right)[\left(x^2+1\right)^2-x^2]\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
Cân bằng hệ số t vừa học:))
Từ đề bài có thể dự đoán a = c (do nó đối xứng nhau). Giả sử xảy ra cực trị tại a = c =x; b =y thì 2x + y = 3.
Ta có: \(a^3+2x^3\ge3x^2a\)
\(8b^3+16y^3\ge24y^2b\) (tách ra rồi cô si cho 3 số, mình tắt cho nhanh:v)
\(c^3+2x^3\ge3x^2c\)
Bây giờ cộng theo vế 3 bđt trên:
\(a^3+8b^3+c^3+4x^3+16y^3\ge3x^2\left(a+c\right)+24y^2b\)
Ta chọn x, y thỏa mãn \(3x^2=24y^2\left(\text{để xuất hiện giả thiết a+b+c=3}\right);2x+y=3\Leftrightarrow\hept{\begin{cases}x=\sqrt{8y^2}\\2\sqrt{8y^2}+y=3\left(2\right)\end{cases}}\)
(2) \(\Leftrightarrow\) \(y=\frac{3}{2\sqrt{8}+1}\) từ đây suy ra x. Có điểm rơi rồi đó, bạn từ làm ik, số xấu ngại làm lắm.