Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có phương trình cân bằng nhiệt
` Q_{toả} = Q_{thu} `
` \Leftrightarrow m_1c_1 \Delta t = m_2c_2 \Delta t `
` \Leftrightarrow m_1.4200(90-36) = 8.4200 (36-22) `
` \Leftrightarrow m_1. 226800 = 470400 `
` \Rightarrow m_1 = \dfrac{470400}{226800} \approx 2kg `
Câu 1)
Ta cóooo phươnggg trìnhhhh cânnnn bằng nhiệttttttttt tức .-.
\(Q_{toảaa}=Q_{thuuu}\\ \Leftrightarrow m_1c_1\Delta t=m_2c_2\Delta t\\ \Leftrightarrow m_1.4200\left(90-36\right)=8.4200\left(36-22\right)\\ \Leftrightarrow m_1.4200.54=4200.112\\ \Leftrightarrow m_1.54=112\\ \Rightarrow m_1=\dfrac{112}{54}\approx2kg=2l\)
* tự tóm tắt t khong rảnh :')) *
Câu 2)
Nhiệt lượng miếng thép toả ra
\(Q_{toả}=m_1c_1\Delta t=0,5.460\left(120-40\right)=18,4kJ=18400J\)
Ta có phương trình cân bằng nhiệt
\(Q_{toả}=Q_{thu}\\ \Rightarrow Q_{thu}=18400J\)
Khối lượng nước
\(Q_{thu}=m_2c_2 \Delta t \\ \Leftrightarrow 18400 = m_2.4200(40-25) \\ \Leftrightarrow 18400=m_2.6300 \)
\(\Rightarrow m_2=\dfrac{18400}{63000} \approx 0,29kg\)
Nhiệt lượng tỏa ra khi 0,2 Kg hơi nước ở 1000C ngưng tụ thành nước ở 1000C
Q1 = m1. L = 0,2 . 2,3.106 = 460000 (J)
Nhiệt lượng tỏa ra khi 0,2Kg nước ở 1000C thành nước ở t0C
Q2 = m1.C. (t1 - t) = 0,2. 4200 (100 - t)
Nhiệt lượng thu vào khi 1,5Kg nước ở 150C thành nước ở t0C
Q3 = m2.C. (t - t2) = 1,5. 4200 (t - 15)
Áp dụng phương trình cân bằng nhiệt:
Q1 + Q2 = Q3
\(\Leftrightarrow\)460000 + 0,2. 4200 (100 - t) = 1,5. 4200 (t - 15)
\(\Leftrightarrow\)6780t = 638500
\(\Leftrightarrow\)t ≈ 940C
Tổng khối lượng khi xảy ra cân bằng nhiệt.
m = m1 + m2 = 0,2 + 1,5 = 1,7(Kg)
Ta có ptcbn
\(Q_{thu}=Q_{tỏa}\\ \Leftrightarrow m_1c_1\left(t_{cb}-t_1\right)=m_2c_2\left(t_2-t_{cb}\right)\\ \Leftrightarrow12.4200\left(85-15\right)=m_24200\left(85-85\right)\\ \Rightarrow m_2=840\)
a/ Giả sử khi rót lượng nước m từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.(t - t1) = m2.(t2 - t) (1)
Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t' = 21,950C và lượng nước trong bình 1 lúc này chỉ còn (m1 - m) nên ta có phương trình cân bằng:
m.(t - t') = (m1 - m).(t' - t1) (2)
Từ (1) và (2) ta có pt sau:
m2.(t2 - t) = m1.(t' - t1)
\(t=\frac{m_2t_2\left(t'-t_1\right)}{m_2}\) (3)
Thay (3) vào (2) tính toán ta rút phương trình sau:
\(m=\frac{m_1m_2\left(t'-t_1\right)}{m_2\left(t_2-t_1\right)-m_1\left(t'-t_1\right)}\) (4)
Thay số vào (3) và (4) ta tìm được: t = 590C và m = 0,1 Kg.
b/ Lúc này nhiệt độ của bình 1 và bình 2 lần lượt là 21,950C và 590C bây giờ ta thực hiện rót 0,1Kg nước từ bình 1 sang bình 2 thì ta có thể viết được phương trình sau:
m.(T2 - t') = m2.(t - T2)
\(T_2=\frac{m_1t'+m_2t}{m+m_2}=58,12^0C\)
Bây giờ ta tiếp tục rót từ bình 2 sang bình 1 ta cũng dễ dàng viết được phương trình sau:
m.(T1 - T2) = (m1 - m).(t - T1)
\(T_1=\frac{mT_2+\left(m_1-m\right)t'}{m_1}=23,76^oC\)
- Gọi lượng nước rót mỗi lần là x ( lít); nhiệt độ cân bằng nhiệt ở bình B là t0(0C); nhiệt dung riêng của nước là c( J/kg.độ); với nước thì 1lít= 1kg
- Lần rót 1: Từ bình A sang bình B ta có phương trình cân bằng nhiệt ở bình B:
x.c.(60 – t0) = 1.c.(t0 – 20)
↔ x.(60 – t0) = (t0 – 20)
↔ x = \(\frac{t_0-20}{60-t_0}\) (1)
- Lần rót 2: Từ bình B sang bình A ta có phương trình cân bằng nhiệt ở bình A:
(5-x).c(60-59) = x.c.(59- t0)
↔ 5-x = x.(59- t0) (2)
- Từ (1;2) ta có: 5- \(\frac{1_0-20}{60-t_0}\)= \(\frac{t_0-20}{60-t_0}\).(59- t0)
↔5.(60-t0)- t0 + 20 = (t0- 20).(59-t0)
↔300- 5t0 –t0 +20 = 59.t0- t02 – 1180 +20.t0
↔t02 – 85.t0 + 1500 = 0.
Giải ra được t0 = 25 (0C) thay vào (1) được x = 1/7( lít)
Đáp án B