K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

ĐK : x >= 0 ; x khác 1

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Để P = -1 thì \(\frac{\sqrt{x}-1}{\sqrt{x}+1}=-1\Rightarrow\sqrt{x}-1=-\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

17 tháng 8 2021

em cảm ơn ạ

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

27 tháng 10 2017

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)

\(=\frac{x+1+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}\)

=x-2 căn x +1/x-1

=(căn x-1)^2/(căn x-1)(căn x+1)

=căn x-1/căn x+1

b, Để căn x-1/căn x+1

=> căn x-1/căn x+1

=căn +1-2/căn x+1

=(căn x+1/căn x+1)+(-2/căn x+1)

=1+  (-2)/căn +1

=>căn x+1 thuộc Ư(-2)={+-1;+-2}

=> x=0 (loại)

=> x vô lý loại

=> x=1

=> x vô lý loại

Vậy để P nghiệm nguyên =>x=4

27 tháng 10 2017

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}+\frac{3\left(\sqrt{x}-1\right)}{x-1}-\frac{6\sqrt{x}-4}{x-1}\)

\(P=\frac{x+\sqrt{x}}{x-1}+\frac{3\sqrt{x}-3}{x-1}-\frac{6\sqrt{x}-4}{x-1}\)

\(P=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}\)

\(P=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b)  Theo câu a) \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}\) với \(x\ge0;x\ne1\)

có \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

vì \(1\in Z\)nên để \(P\)nhận giá trị nguyên thì \(\frac{2}{\sqrt{x}+1}\)nhận giá trị nguyên

vì \(x\in Z\)nên \(\sqrt{x}\)có thể là số nguyên hoặc số vô tỉ

- nếu \(\sqrt{x}\)là số vô tỉ thì \(\frac{2}{\sqrt{x}+1}\)ko nhận giá trị nguyên   ( Trường hợp này ko xảy ra)

- nếu \(\sqrt{x}\)là số nguyên thì \(\sqrt{x}+1\)nhận giá trị nguyên

để \(\frac{2}{\sqrt{x}+1}\)nhận giá trị nguyên thì \(2⋮\sqrt{x}+1\Leftrightarrow\sqrt{x}+1\inƯ_{\left(2\right)}\Leftrightarrow\sqrt{x}+1\in\left\{-+1;-+2\right\}\)

vì \(\sqrt{x}+1\ge1\forall x\ge0\) nên

\(\sqrt{x}+1\in\left\{1;2\right\}\)

\(\sqrt{x}+1=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

\(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

kết hợp với điều kiện \(x\ge0;x\ne1\)và \(x\in Z\)

Ta có \(x=0\)thì \(P\)nhận giá trị nguyên

11 tháng 7 2017

ĐK  ; \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

a, \(Q=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x-8\sqrt{x}+7}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-7\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-7}{\sqrt{x}+1}\)

b. \(Q< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-7}{\sqrt{x}+1}-\frac{1}{2}< 0\Rightarrow\frac{\sqrt{x}-15}{2\left(\sqrt{x}+1\right)}< 0\Rightarrow\sqrt{x}-15< 0\)

\(\Rightarrow0\le x< 225\)và \(x\ne4\)

c. \(Q=\frac{\sqrt{x}-7}{\sqrt{x}+1}=1-\frac{8}{\sqrt{x}+1}\)

Ta thấy \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\frac{-8}{\sqrt{x}+1}\ge-8\Rightarrow1-\frac{8}{\sqrt{x}+1}\ge-7\)

\(\Rightarrow Q\ge-7\)

Vậy \(MinQ=-7\). Dấu bằng xảy ra \(\Rightarrow x=0\)