Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
a. Ta có \(P=\frac{3a+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-2}{\sqrt{a}-1}+\frac{1}{\sqrt{a}+2}-1\)
\(=\frac{3a+3\sqrt{a}-3-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{3a+3\sqrt{a}-3-a+4+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\)
b. Để \(\left|P\right|=2\Rightarrow\orbr{\begin{cases}P=2\\P=-2\end{cases}}\)
Với \(P=2\Rightarrow\sqrt{a}+1=2\sqrt{a}-2\Rightarrow\sqrt{a}=3\Rightarrow a=9\)
Với \(P=-2\Rightarrow\sqrt{a}+1=2-2\sqrt{a}\Rightarrow\sqrt{a}=\frac{1}{3}\Rightarrow a=\frac{1}{9}\)
c. Ta có \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Để \(P\in N\Rightarrow P\in Z\Rightarrow\sqrt{a}-1\in\left\{-2;-1;1;2\right\}\)
\(\sqrt{a}-1\) | \(-2\) | \(-1\) | \(1\) | \(2\) |
\(\sqrt{a}\) | \(-1\) | \(0\) | \(2\) | \(3\) |
\(a\) | \(0\) | \(4\) | \(9\) | |
\(\left(l\right)\) | \(\left(tm\right)\) | \(\left(tm\right)\) | \(\left(tm\right)\) |
Vậy \(x\in\left\{0;4;9\right\}\)thì \(P\in N\)
Bài 1
a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\) (ĐK : x\(\ge0\) ; x\(\ne\) 1)
\(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)
\(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)
Mà Ư(2)={-1;1;2;-1}
=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-1\) | 1 | -1 | 2 | -2 |
a | 4 | 0 | 9 | \(\sqrt{a}=-1\) (ktm) |
vậy a={0;4;9} thì P nguyên
Bài 2
\(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)
\(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)
\(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)
\(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)
\(=\frac{2a}{\sqrt{a-4}}\)
Ta có \(\left(\sqrt{a}+2\right)\left(1-\sqrt{a}\right)=a+\sqrt{a}-2\)
\(=\frac{3\text{a}+3\sqrt{a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)
\(=\frac{3\text{a}+3\sqrt{a}-3-a+1+a-4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{3\text{a}+3\sqrt{a}-6}{a+\sqrt{a}-2}\)
\(=\frac{3\left(a+\sqrt{a}-2\right)}{a+\sqrt{a}-2}\)
\(=3\)
b/ Ta có 3 là số nguyên nên biểu thức P luôn nguyên với mọi x
TICK CHO MÌNH NHA
ĐKXĐ: ...
\(P=\frac{3a+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}+\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\frac{a+\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{3a+3\sqrt{a}-3-a+4+\sqrt{a}-1-a-\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
\(\left|P\right|=1\Rightarrow\left[{}\begin{matrix}P=1\\P=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{\sqrt{a}+1}{\sqrt{a}-1}=1\\\frac{\sqrt{a}+1}{\sqrt{a}-1}=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+1=\sqrt{a}-1\left(vn\right)\\\sqrt{a}+1=-\sqrt{a}+1\end{matrix}\right.\) \(\Rightarrow a=0\)
\(P=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
\(P\in N\Rightarrow\sqrt{a}-1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\sqrt{a}=\left\{-1\left(l\right);0;2;3\right\}\)
\(\Rightarrow a=\left\{0;4;9\right\}\)
Thay vào P chỉ thấy \(a=\left\{4;9\right\}\) thỏa mãn