K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

Đặt: \(x^2+10x+21=t\)

Ta có: \(A=\left(\left(x+2\right)\left(x+8\right)\right)\left(\left(x+4\right)\left(x+6\right)\right)+2008\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+2008\)

Thay t vào ta được: \(A=\left(t-5\right)\left(t+3\right)+2008=t^2-2t+15+2008=t^2-2t+2023\)

Vậy A chia t dư 2023

19 tháng 2 2017

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2008=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+2008\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)\)

đặt \(x^2+10x+21=a\)

ta có \(\left(a-5\right)\left(a+3\right)=a^2-2a-15+2008=a\left(a-2\right)+1993\)

ta có a(a-2) chia hết cho a hay x^2+10x+21

số dư là 1993

Vì từ thời gian này cho đến tháng 3 t hơi bận ôn hsg nên ko giúp bọn m dc . Nhưng mỗi tuần t sẽ cố post 1 bài cho bọn m tham khảo. P/s :Đừng quăng gạch nhéo !!! Quăng gạch là vỡ màn hình bọn m chứ ko vỡ màn hình máy t âu :)) Đề : Tìm số dư trong phép chia của biểu thức : \(\left[\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2008\right]:\left(x^2+10x+21\right)\) Giải : Ta có...
Đọc tiếp

Vì từ thời gian này cho đến tháng 3 t hơi bận ôn hsg nên ko giúp bọn m dc . Nhưng mỗi tuần t sẽ cố post 1 bài cho bọn m tham khảo.

P/s :Đừng quăng gạch nhéo !!! Quăng gạch là vỡ màn hình bọn m chứ ko vỡ màn hình máy t âu :))

Đề :

Tìm số dư trong phép chia của biểu thức :

\(\left[\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2008\right]:\left(x^2+10x+21\right)\)

Giải :

Ta có :

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2008\)

\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+2008\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+2008\)

Đặt : \(x^2+10x+20=t\) (1)

Biểu thức trở thành :

\(\left[\left(t-4\right)\left(t+4\right)+2008\right]:\left(t+1\right)\)

\(=\left(t^2-16+2008\right):\left(t+1\right)\)

\(=\left(t^2+1992\right):\left(t+1\right)\)

\(=t\) ( dư 1992 - t )

Thay vào 1 ta có số dư là :

\(1971-x^2-10x\)

Thân ~

~S.b~

Sai âu thì cmt bên dưới nhé ;)

2
24 tháng 1 2017

Có 1 lỗi sai nho nhỏ ở phần cuối

1992 - t = 1992 - (x^2 + 10x + 20) = 1972 - x^2 - 10x

24 tháng 1 2017

Ờ... đọc không hiểu gì hết mà thôi để dành năm sau học rồi đọc. Cảm ơn nhiều nha :))

NV
2 tháng 1 2019

\(f\left(x\right)\) chia \(x+1\) dư 4 \(\Rightarrow f\left(x\right)=\left(x+1\right).P\left(x\right)+4\)

\(f\left(-1\right)=\left(-1+1\right)P\left(x\right)+4=4\)

Do \(\left(x+1\right)\left(x^2+1\right)\) là đa thức bậc 3 \(\Rightarrow\) phần dư của phép chia \(f\left(x\right)\) cho \(\left(x+1\right)\left(x^2+1\right)\) là bậc 2 có dạng \(ax^2+bx+c\)

\(\Rightarrow f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+ax^2+bx+c\)(1)

\(f\left(-1\right)=a-b+c=4\) (2)

Biến đổi biểu thức (1):

\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(f\left(x\right)=\left(x^2+1\right)\left[\left(x+1\right).Q\left(x\right)+a\right]+bx+c-a\)

\(\Rightarrow f\left(x\right)\) chia \(x^2+1\)\(bx+c-a\)

\(\Rightarrow bx+c-a=2x+3\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)

Kết hợp (2) ta được: \(\left\{{}\begin{matrix}b=2\\c-a=3\\a-b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=2\\c=\dfrac{9}{2}\end{matrix}\right.\)

Vậy phần dư cần tìm là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)

2 tháng 1 2019

Theo Bơdu, ta có:

\(f\left(x\right):\left(x+1\right)\) dư 4

\(\Rightarrow f\left(-1\right)=4\)

Vì đa thức chia \(\left(x+1\right)\left(x^2+1\right)\) có bậc 3 nên đa thức dư có bậc \(\le2\). Đặt đa thức dư có dạng \(ax^2+bx+c\)

Gọi \(P\left(x\right)\) là đa thức thương. Ta có:

\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+bx+c\)

\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+a-a+bx+c\)

\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(=\left(x^2+1\right)\left[P\left(x\right).\left(x+1\right)+a\right]+bx-a+c\)

\(f\left(x\right):\left(x^2+1\right)\)\(2x+3\)

\(\Rightarrow bx+c-a=2x+3\)

\(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)

Lại có: \(f\left(-1\right)=ax^2+bx+c=4\)

\(\Leftrightarrow a-b+c=4\Leftrightarrow a+c-2=4\)

\(\Leftrightarrow a+c=6\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=\dfrac{9}{2}\end{matrix}\right.\)

Vậy đa thức dư là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)

19 tháng 5 2020

a sai nha ! đọc ko kĩ đề !

19 tháng 5 2020

uh