K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

Đề thiếu rồi. Phải cho tìm x, y hay chứng minh (chắc không có chứng minh) chứ!

26 tháng 7 2017

dấu hiệu chia hết cho 4 là : 2 số cuối cùng chia hết cho 4 thì số đó chia hết cho 4

dấu hiệu chia hết 5 : số có tận cùng là 0 ; 5 thì chia hết 5

\(x1357y⋮5\) => y=0 hoặc 5

TH1 : y = 0

=> x13570\(⋮5\)

vì 70 \(⋮4̸\) ( loại )

TH2 : y = 5

=> \(x13575⋮5\) nhưng 75 ko chia hết 4 (loại )

từ 2 trường hợp trên => ko tồn tại y

\(\Leftrightarrow\) ko có số x1357y \(⋮5;4\)

21 tháng 10 2017

\(\overline{x1357y}⋮5\) nên \(y\in\left\{0;5\right\}\).

Do \(75⋮4\) nên \(y=0\). Ta được \(\overline{x13570}\).

\(\overline{x13570}⋮4;5\) nên \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\).

Vậy \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)\(y=0\).

11 tháng 4 2017

Giống nhau:

- Đều là các số tự nhiên

Khác nhau:

-số nguyên tố tự nhiên chỉ có hai ước là 1 và chính nó

-Hợp số là số tự nhiên có nhiều hơn hai ước

Tích của hai số nguyên tố là hợp số bởi ngoài ước là 1 ra nó còn có ước là hai số nguyên tố đó nữa.

11 tháng 4 2017

thanks

23 tháng 10 2017

Bỏ mũ 2006 nha mọi người!

10 tháng 8 2018

Tuy có vẻ hơi muộn nhưng thôi leuleu

Nếu A là số tự nhiên ⇒ \(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

\(\Rightarrow7^{2004}-3^{92^{94}}⋮10\)

Thật vậy, ta có :

72004 với lũy thừa là 2004 ⋮ 4

⇒ 72004 = ( .......... 9 )

392^94 với lũy thừa là 9294 mà 92 ⋮ 4 ⇒ 9294 ⋮ 4

⇒ 392^94 = ( .......... 9 )

⇒ 72004 - 392^94 = ( .......... 9 ) - ( ............ 9) = ( ........... 0 ) ⋮ 10

\(\dfrac{1}{10}\left(7^{2004}-3^{92^{94}}\right)\in N\)

A=1/10.(72004-392^94) là số tự nhiên.

23 tháng 10 2017

\(\left(2^{19}.27^3+15.4^9.9^4\right):\left(6^9.2^{10}+12^{10}\right)\)

\(=\left[2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4\right]:\left[2^9.3^9.2^{10}+2^{10}.6^{10}\right]\)

\(=\left(2^{19}.3^9+3.5.2^{18}.3^8\right):\left(2^{19}.3^9+2^{10}.2^{10}.3^{10}\right)\)

\(=\left(2^{19}.3^9+5.3^9.2^{18}\right):\left(2^{19}.3^9+2^{20}.3^{10}\right)\)

\(=2^{18}.3^9.\left(1.2+5\right):2^{19}.3^9.\left(1+2.3\right)\)

\(=\left(2^{18}.3^9.7\right):\left(2^{18}.2.3^9.7\right)\)

\(=1:2\)

\(=0.5\)

17 tháng 4 2017

ta có ab3=3/4.3ab

=> 3.ab3=4.3ab

=> 3.(100a+10b+3)=4.(300+10a+b)

= 300a+30b+9=1200+40a+4b

=>(300a-40a)+(30b-4b)=1200-9

=260a+26b=1196

=26.(10a+b)=1196

=>10a+b=1196:26

=10a+b=46

=>10a+b=10.4+6

=>a=4:b=6

19 tháng 4 2017

Thanks, I understand the post

7 tháng 2 2017

Ta có : \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)

\(=9999.\overline{ab}+\overline{ab}+99.\overline{cd}+\overline{cd}+\overline{eg}\)

\(=\left(9999.\overline{ab}+99.\overline{cd}\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Vì : \(9999.\overline{ab}+99.\overline{cd}⋮11\)\(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)

\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)

7 tháng 2 2017

Ta có:

\(\overline{abcdeg}=\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)

\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)

\(=\overline{ab}.11.909+\overline{cd}.11.9+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

\(=11\left(\overline{ab}.909+\overline{cd}.9\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

\(11\left(\overline{ab}.909+\overline{cd}.9\right)⋮11\)\(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)

nên \(\overline{abcdeg}⋮11\)

Vậy nếu \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\) thì \(\overline{abcdeg}⋮11\) (đpcm)

4 tháng 5 2017

để n thuộc z thì => 4 ⋮ 2n

=> 2n thuộc Ư(4) = {1;-1;2;-2;4;-4}

ta có bảng

2n 1 -1 2 -2 4 -4
n 1/2(loại) -1/2(loại) 1 -1 2 -2

vậy n= 1; -1 ;2 ;-2

23 tháng 10 2017

Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)

Nhân C với \(3^2\)ta có:

\(9S=3^2+3^4+3^6+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\)

\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)

Chứng minh:

Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)

\(\)UCLN(7;8)=1

\(\Rightarrow S⋮7\)

23 tháng 10 2017

Sửa lại 1 chút!

Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7