K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

Chọn A.

Lời giải.

Không gian mẫu là số cách chọn 2 phần thưởng trong số 12 phần thưởng

Suy ra số phần tử của không gian mẫu là  Ω = C 12 2 = 66

Gọi A là biến cố ""Bạn An và bạn Bình có phần  thưởng giống nhau"".

Để tìm số phần tử của A, ta làm như sau

Gọi x là cặp số gồm 2 quyển Toán và Vật Lí

y là số cặp gồm 2 quyển Toán và Hóa Học;

z là số cặp gồm 2 quyển Vật Lí và Hóa Học

Ta có hệ phương trình

Suy ra số phần tử của biến cố A là

Ω A = C 3 2 + C 4 2 + C 5 2

Vậy xác suất cần tính  P ( A ) = 19 66

12 tháng 3 2019

Đáp án D

Ta chia số phần thưởng đó thành 3 bộ Toán Lý, 4 bộ Toán Hóa và 5 bộ Hóa Lý.

Như vậy, có C 12 2 cách chọn giải thưởng cho An và Bình

Trong đó, cách chọn số bộ Toán Lý là C 3 2 , cách chọn số bộ Toán Hóa là C 3 2 , cách chọn số bộ Hóa Lý là  C 4 2

Do đó, xác suất là

31 tháng 5 2019

Đáp án D

Ta chia số phần thưởng đó thành 3 bộ Toán Lý, 4 bộ Toán Hóa và 5 bộ Hóa Lý.

Như vậy, có C 12 2 cách chọn giải thưởng cho An và Bình.

Trong đó, cách chọn số bộ Toán Lý là C 3 2

cách chọn số bộ Toán Hóa là C 4 2

cách chọn số bộ Hóa Lý là  C 5 2 .

Do đó, xác suất là

28 tháng 3 2017

Chọn C

Xét phép thử T: “Chọn 7 cuốn sách từ 15 cuốn sách”.

Số phần tử của không gian mẫu trong phép thử là C 15 7 .

Gọi A biến cố  chọn 7 cuốn sách có đủ 3 môn trong phép thử T.

Xác suất của biến cố cần tìm bằng xác suất của biến cố A.

Ta có 

Vậy 


5 tháng 4 2017

Đáp án là A.

          Ta tìm số cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn.

Có 3 trường hợp :

          7 cuốn còn lại gồm 2 môn toán lý : có C 9 7  cách

          7 cuốn còn lại gồm 2 môn lý hóa : có C 11 7  cách

          7 cuốn còn lại gồm 2 môn toán hóa : có C 10 7  cách

 Suy ra có  C 9 7 +  C 11 7 +  C 10 7 = 486 cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn. Do đó số cách chọn 8 cuốn sao cho 7 cuốn còn lại có đủ 3 môn là C 15 7 - 486 = 5949 cách.

Xác suất cần tìm là P =  5949 C 15 7   =   661 715

NV
27 tháng 2 2023

Có 3 loại hình thức nhận thưởng: sách+sổ, sách+bút, sổ+bút

Gọi số học sinh nhận được phần thưởng thuộc 3 loại nói trên lần lượt là x;y;z

\(\Rightarrow\left\{{}\begin{matrix}x+y=9\\x+z=8\\y+z=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=5\end{matrix}\right.\)

Hay chúng ta có 3 bạn nhận thưởng sách+sổ, 6 bạn nhận sách+bút, 5 bạn nhận sổ+bút

Như vậy có 3 TH để An và Bình nhận thưởng giống nhau là:

- An Bình cùng nhận sách sổ: còn lại 12 bạn, chọn 6 bạn nhận sách bút có \(C_{12}^6\) sách, còn lại 6 bạn, chọn 5 bạn nhận sổ bút có \(C_6^5\) cách, còn 1 bạn, chọn 1 bạn nhận sách sổ có \(C_1^1\) cách \(\Rightarrow C_{12}^6.C_6^5.C_1^1\) cách

- An Bình nhận sách bút: tương tự như trên ta có \(C_{12}^3.C_9^4.C_5^5\) cách

- An Bình nhận bút sổ: \(C_{12}^3.C_9^6.C_3^3\) cách

Tổng: \(51744\) cách

27 tháng 2 2023

Gọi a là số học sinh nhận được sách và sổ ; b là số học sinh nhận được sách và bút ; c là số học sinh nhận được sổ và bút. Ta có : \(a+b=9,a+c=8,b+c=11\)

Giải ra ta được \(a=3,b=6,c=5\)

Xét ba trường hợp sau : TH 1 : An và Bình cùng nhận được sách và sổ. Có 3 người cùng nhận được sách và sổ, trong đó có An và Bình. Vì vậy cần chọn ra 1 người trong só 12 học sinh để nhận sách và sổ suy ra có \(C_{12}^1\) cách chọn. Sau đó chọn ra 6 em trong số 11 học sinh còn lại để nhận sách và bút và 5 học sinh còn lại nhận sổ và bút. Vậy số kết quả trong TH này là: \(C_{12}^1.C^6_{12}\)

TH 2 : An và Bình cùng nhận được sách và bút. Lập luận tương tự TH 1 ta có số kết quả trong TH này là : \(C_{12}^4.C_8^3\)

TH 3 : An và Bình cùng nhận được sổ và bút. Số kết quả trong TH này là :\(C_{12}^3.C_9^3\). . Vậy có: \(C_{12}^1.C_{12}^6+C_{12}^4.C_8^3+C_{12}^3.C_9^3=51744\) cách phát phần thưởng thỏa mãn bài toán. 

Đáp án: \(51744\) 

Câu 1Tính   A. 0B. 1 C. 2D. 3Câu 2Cho hình chóp S.ABC có SA vuông góc với (ABC) và tam giác ABC là tam giác vuông tại B. AH là đường cao của tam giác SAB. Phát biểu nào sau đây là sai?  A. B.  C. D. Câu 3Tính   A. Không tồn tạiB. C.  D. Câu 4Tính   A.  0B. 4 C. 9D. Câu 5Cho hình lập phương ABCD.A’B’C’D’. Khi đó góc giữa đường thẳng BC và B’D’ là:  A. B.  C. D. Câu...
Đọc tiếp

Câu 1

Tính 

 

 

A. 0

B. 1

 

C. 2

D. 3

Câu 2

Cho hình chóp S.ABC có SA vuông góc với (ABC) và tam giác ABC là tam giác vuông tại B. AH là đường cao của tam giác SAB. Phát biểu nào sau đây là sai?

 

 

A. 

B. 

 

C. 

D. 

Câu 3

Tính 

 

 

A. Không tồn tại

B. 

C. 

 

D. 

Câu 4

Tính 

 

 

A.  0

B. 4

 

C. 9

D. 

Câu 5

Cho hình lập phương ABCD.A’B’C’D’. Khi đó góc giữa đường thẳng BC và B’D’ là:

 

 

A. 

B. 

 

C. 

D. 

Câu 6

Tính .

 

 

A. 3

B. 

C. 

 

D. 2

Câu 7

Gọi  là VTCP của 2 đường thẳng d và d’. Nếu  thì:

 

 

A. 

B. 

 

C. 

D. 

Câu 8

Tính 

 

 

A. 

B. 

C. 

 

D. 

Câu 9

Có bao nhiêu đường thẳng đi qua 1 điểm và vuông góc với 1 mặt phẳng cho trước?

 

 

A. 0

B. 2

C. Vô số

 

D. 1

Câu 10

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và SA = SC, SB = SD. Khi đó:

 

 

A. 

B. 

 

C. 

D. 

Câu 11

Cho . Khi đó  bằng:

 

 

A. 

B. 

C. 

 

D. 

Câu 12

Phát biểu nào sau đây là sai?

 

 

A. Một đường thẳng vuông góc với một mặt phẳng thì đường đường thẳng đó vuông góc với mọi đường thẳng nằm trong mặt phẳng.

B. Một đường thẳng vuông góc với một mặt phẳng nếu đường thẳng đó vuông góc với hai đường thẳng nằm trong mặt phẳng

C. Cho hai mặt phẳng song song với nhau, một đường thẳng vuông góc với mặt phẳng này thì cũng vuông góc với mặt phẳng còn lại.

 

D. Cho hai đường thẳng song song, một mặt phẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng còn lại.

Câu 13

Cho ba đường thẳng phân biệt a, b, c. Phát biểu nào sau đây là sai?

 

 

A. 

B. 

C. 

 

D. 

Câu 14

Cho hình chóp S.ABC có SA vuông góc với (ABC) và tam giác ABC là tam giác vuông tại B. Vẽ AH là đường cao của tam giác SAB. Phát biểu nào sau đây là sai?

 

 

A. 

B. 

C. 

 

D. 

Câu 15

Cho hình chóp S.ABC với đáy ABC là tam giác đều và SA vuông góc với đáy. Gọi I là trung điểm BC. Mệnh đề nào sau đây là đúng?

 

 

A. 

B. 

C. 

 

D. 

Câu 16

Tính tổng 

 

 

A. 2

B. 

C. 

D. 4

 

Câu 17

Cho hình chóp S.ABCD với đáy ABCD là hình thoi tâm O và SA=SC. Khẳng định nào sau đây là đúng?

 

 

A. 

B. 

C. 

D. 

 

Câu 18

Tính 

 

 

A. Không tồn tại

B. 4

 

C. 

D. 

Câu 19

Tính 

 

 

A. 4

B. 

 

C. 0

D. Không tồn tại

Câu 20

Tính 

 

 

A. 3

B. 2

C. 0

 

D. 1

Câu 21

Cho . Tính 

 

 

A. 3

B. 2

C. 4

 

D. 1

Câu 22

Cho . Khi đó:

 

 

A. 

B. 

C. 

 

D. 

Câu 23

Cho hai đường thẳng phân biệt a, b và mặt phẳng (P). Mệnh đề nào sau đây là đúng?

 

 

A. 

B. 

C. 

 

D. 

Câu 24

Cho hình hộp ABCD.A’B’C’D’. Phát biểu nào sau đây là đúng?

 

 

A. 

B. 

C. 

 

D. 

Câu 25

Tính .

 

 

A. 

B. 0

 

C. 

D. 

Câu 26

Tính . Tìm b.

 

 

A. 1

B. 

 

C. 

D. 2

Câu 27

Tính .

 

 

A. 

B. 6

C. 0

D. 1

 

Câu 28

Cho hàm số . Tính .

 

 

A. Không tồn tại

B. 2

C. 

D. 1

 

Câu 29

Cho hình chóp S.ABCD với SA = SB = SC = SD và đáy là hình vuông tâm O. Vẽ  và . Khi đó:

 

 

A. 

B. 

C. 

D. 

 

Câu 30

Tính .

 

 

A. 

B. 

C. 

D. 2

 

Câu 31

Tính  với .

 

 

A. 

B. 

C. Không tồn tại

D. 0

 

Câu 32

Cho  và . Khi đó  bằng:

 

 

A. Không tồn tại

B. 

C. 

D. 0

 

Câu 33

Tính 

 

 

A. 0

 

B. Không tồn tại

C. 

D. 

Câu 34

Tính 

 

 

A. 

 

B. 3

C. 

D. 2

Câu 35

Cho . Khi đó  bằng:

 

 

A. 

 

B. 

C. 

D. 0

Câu 36

Tính 

 

 

A. 1

 

B. 0

C. 

D. 

Câu 37

Tính 

 

 

A. 

 

B. 1

C. 

D. 2

Câu 38

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và SA vuông góc với đáy. Phát biểu nào sau đây là sai?

 

 

A. 

 

B. 

C. 

D. 

Câu 39

Cho . Khi đó  bằng

 

 

A. 

 

B. 

C. Không tồn tại

D. 

Câu 40

Cho . Tính .

 

 

A. 2

 

B. 

C. 1

D. 

1
27 tháng 4 2020

Bn nên xem lại cái đề

2 tháng 7 2017

Đáp án B

Gọi biến cố A: “Số cuốn sách còn lại của thầy Tuấn có đủ cả ba môn”.

Khi đó ta có biến cố: A ¯ : “Số cuốn sách còn lại của thầy Tuấn không có đủ cả 3 môn”.

 

21 tháng 1 2021

`Loại 1: chọn tùy ý 7 cuôn từ 19 cuốn C719 = 50388 cách

Loại 2: chọn 7 cuốn từ 2 môn

TH1: hóa +lí : C711 = 330

TH2: lí+ toán: C714 = 3432

TH3: hóa+ toán: C713 = 1716

tổng = 5478

ta có: loại 1 - loại 2 = 50388-5478=44910( cách)