Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)
\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)
\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)
Cộng theo vế và rút gọn:
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)
\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
Giải:
Áp dụng BĐT Cauchy cho nhiều số dương:
\(1+\dfrac{1}{a}=\dfrac{a+1}{a}=\dfrac{a+a+b+c}{a}\ge\dfrac{4\sqrt[4]{a^2.b.c}}{a}\)
\(1+\dfrac{1}{b}=\dfrac{b+1}{b}=\dfrac{a+b+b+c}{b}\ge\dfrac{4\sqrt[4]{a.b^2.c}}{a}\)
\(1+\dfrac{1}{c}=\dfrac{c+1}{c}=\dfrac{a+b+c+c}{b}\ge\dfrac{4\sqrt[4]{a.b.c^2}}{c}\)
Nhân vế theo vế, được:
\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge\dfrac{64\sqrt[4]{a^4.b^4.c^4}}{a.b.c}\)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge\dfrac{64.abc}{abc}\)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
Vậy ...
Lời giải:
Ta có:
\(\text{VT}=\frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+\frac{c}{(c+1)(a+1)}\)
\(=\frac{a(c+1)+b(a+1)+c(b+1)}{(a+1)(b+1)(c+1)}=\frac{ab+bc+ac+a+b+c}{abc+(ab+bc+ac)+(a+b+c)+1}\)
\(=\frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\)
Ta cần chứng minh \(\text{VT}\geq \frac{3}{4}\)
\(\Leftrightarrow \frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\geq \frac{3}{4}\)
\(\Leftrightarrow 4(ab+bc+ac+a+b+c)\geq 3(ab+bc+ac+a+b+c)+6\)
\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\)
\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\sqrt[6]{ab.bc.ac.a.b.c}\)
(Đúng theo BĐT Cô-si)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=1\)
Giải:
\(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)(*)
\(\Leftrightarrow\) \(\dfrac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{3}{4}\)
\(\Leftrightarrow\) \(\dfrac{ac+a+ab+b+bc+c}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\) \(\ge\) \(\dfrac{3}{4}\)
Do a+1 ; b+1; c+1 >0
\(\Rightarrow\) 4ac+4a+4ab+4b+4bc+4c \(\ge\) 3abc+3ac+3bc+3ab+3a+3b+3c+3
\(\Leftrightarrow\) ac+ab+bc+a+b+c -6 \(\ge\) 0
Áp dụng BĐT Cô-si cho 3 số
Ta có: a+b+c \(\ge\) \(3\sqrt[3]{abc}=3\)
ab+bc+ca \(\ge\) \(3\sqrt[3]{\left(abc\right)^2}\) = 3
\(\Rightarrow\)ac+ab+bc+a+b+c -6 \(\ge\) 0 ( luôn đúng)
\(\Rightarrow\) (*) được chứng minh
Dấu "=" xảy ra \(\Leftrightarrow\) a=b=c=1
Áp dụng BĐT holder cho n bộ 3 số:
\(\left(\sum\dfrac{b^nc^n}{b+c}\right)\left[\sum\left(b+c\right)\right]\left(1+1+1\right)..\left(1+1+1\right)\ge\left(ab+bc+ca\right)^n\)
\(\Leftrightarrow VT\ge\dfrac{\left(ab+bc+ca\right)^n}{3^{n-2}.2.\left(a+b+c\right)}\ge\dfrac{3^{n-2}.3abc\left(a+b+c\right)}{3^{n-2}.2.\left(a+b+c\right)}=\dfrac{3}{2}\)
#Hint:(\(\left\{{}\begin{matrix}ab+bc+ca\ge3\\\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\end{matrix}\right.\))
BĐT holder thường dùng:
\(\left(a_1^m+a_2^m+...+a_k^m\right)\left(b_1^m+b_2^m+...+b_k^m\right)...\left(c_1^m+...+c_k^m\right)\ge\left(a_1b_1...c_1+a_2.b_2...c_2+...+a_k.b_k...c_k\right)^m\)
trong đó VT có m thừa số từ a đến c
abc = 1 nưa nha