Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
a) ⇒ \(\dfrac{5}{3}x\) \(=\) \(\dfrac{5}{6}+\dfrac{1}{4}\)
⇒ \(\dfrac{5}{3}x=\dfrac{13}{12}\)
⇒ \(x=\dfrac{13}{12}:\dfrac{5}{3}\)
⇒\(x=\dfrac{13}{20}\)
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Với \(x=\dfrac{16}{9}\)
\(A=\dfrac{\sqrt{\dfrac{16}{9}}+1}{\sqrt{\dfrac{16}{9}}-1}\)
\(A=\dfrac{\dfrac{4}{3}+1}{\dfrac{4}{3}-1}=\dfrac{\dfrac{7}{3}}{\dfrac{-1}{3}}=7:3:-1.3=-7\)
Với \(x=\dfrac{25}{9}\)
\(A=\dfrac{\sqrt{\dfrac{25}{9}}+1}{\sqrt{\dfrac{25}{9}}-1}\)
\(A=\dfrac{\dfrac{5}{3}+1}{\dfrac{5}{3}-1}=\dfrac{\dfrac{8}{3}}{\dfrac{2}{3}}=8:3:2.3=4\)
\(\rightarrowđpcm\)
B1
a. = 7/3. ( 37/5 - 32/5)
= 7/3 . 1
= 7/3
Phần b có gì đó sai sao lại có 3:+
c. = 4 + 6 - 3 + 5
= 12
d. = -5/21 : -19/21 : 4/5
= 25/76
B2
a. 1/4 : x =1/2 - 3/4
x = -1/4
x = 1/4 : -1/4
x = -1
b. 2 . | 2x - 3 | = 4 - (-8)
2 . | 2x - 3| = 12
| 2x - 3 | = 12:2
| 2x - 3 | = 6
| x - 3 | = 6:2
| x - 3 | = 3
=> x - 3 = +- 3
* x - 3 = 3
x = 6
* x - 3 = -3
x = 0
Chúc bạn vui vẻ
Câu 1:
\(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\)
Vì \(\left\{{}\begin{matrix}\left|3x-5\right|\ge0\forall x\\\left(2y+5\right)^{208}\ge0\forall y\\\left(4z-3\right)^{20}\ge0\forall z\end{matrix}\right.\)
=> \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4x-3\right)^{20}\ge0\)
mà theo đề thì: \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\)
=> \(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x-5\right|=0\\\left(2y+5\right)^{208}=0\\\left(4z-3\right)^{20}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Vậy.....
P/s: mấy câu kia dễ tự làm, câu 6 có đầy trên gu gồ nhé, tự tìm
Câu 6
Ta có:\(\dfrac{a}{c}=\dfrac{c}{b}\) \(\rightarrow a.b=c^2\)
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+\left(a.b\right)}{b^2+\left(a.b\right)}=\dfrac{a}{b}\)
1.
a. \(0,5\sqrt{100}-\sqrt{\dfrac{4}{25}}=5-\dfrac{2}{5}=\dfrac{23}{5}>1\)
\(\dfrac{\left(\sqrt{1\dfrac{1}{9}}-\sqrt{\dfrac{9}{16}}\right)}{5}=\dfrac{\dfrac{\sqrt{10}}{3}-\dfrac{3}{4}}{5}=\dfrac{-9+4\sqrt{10}}{60}\approx0,06< 1\)
\(\Rightarrow0,5\sqrt{100}-\sqrt{\dfrac{4}{25}}>\dfrac{\left(\sqrt{1\dfrac{1}{9}}-\sqrt{\dfrac{9}{16}}\right)}{5}\)
2.
Ta có:
\(\left(\sqrt{a+b}\right)^2=a+b\)
\(\left(\sqrt{a}+\sqrt{b}\right)=\left(\sqrt{a}\right)^2+2\sqrt{ab}+\left(\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)
=> \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
1b.
Áp dụng công thức trên
=> \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
2.
\(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\\ \Rightarrow a+b< a+2\sqrt{ab}+b\\ \Rightarrow2\sqrt{ab}>0\\ \Rightarrow\sqrt{ab}>0\)
Luôn đúng với mọi a;b dươn g
=> đpcm
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
a: \(\left(x^2-3\right)\left(2x^2-\dfrac{9}{8}\right)\left(\sqrt{\left|x\right|}-\sqrt{\dfrac{5}{2}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=0\\2x^2-\dfrac{9}{8}=0\\\sqrt{\left|x\right|}-\sqrt{\dfrac{5}{2}}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=3\\x^2=\dfrac{9}{16}\\\left|x\right|=\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow x\in\left\{-\sqrt{3};\sqrt{3};\dfrac{3}{4};-\dfrac{3}{4};\dfrac{-5}{2};\dfrac{5}{2}\right\}\)
b: \(x-5\sqrt{x}=0\)(ĐKXĐ: x>=0)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-5\right)=0\)
=>x=0 hoặc x=25
2) a) \(\left(x+\dfrac{4}{5}\right)^2=\dfrac{9}{25}\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{3}{5}\\x+\dfrac{4}{5}=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{5}\\x=\dfrac{-7}{5}\end{matrix}\right.\) vậy \(x=\dfrac{-1}{5};x=\dfrac{-7}{5}\)
b) \(\left|x-\dfrac{3}{7}\right|=-2\) vì giá trị đối không âm được nên phương trình này vô nghiệm
c) điều kiện : \(x\ge-7\) \(\sqrt{x+7}-2=4\Leftrightarrow\sqrt{x+7}=4+2=6\)
\(\Leftrightarrow x+7=6^2=36\Leftrightarrow x=36-7=29\) vậy \(x=29\)
d) \(x^2-\dfrac{7}{9}x=0\Leftrightarrow x\left(x-\dfrac{7}{9}\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-\dfrac{7}{9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\) vậy \(x=0;x=\dfrac{7}{9}\)
1) tìm GTNN
a) \(B=\left|x-2017\right|+\left|x-20\right|\)
B \(\ge\left|x-2017-x+20\right|=\left|-1997\right|=1997\)
Dấu " = " xảy ra khi và chỉ khi 20 \(\le x\le2017\)
Vậy MinB = 1997 khi 20 \(\le x\le2017\)
b) \(C=\left|x-3\right|+\left|x-5\right|\)
\(C\ge\left|x-3-x+5\right|=\left|2\right|=2\)
Dấu " = " xảy ra khi 3 \(\le x\le5\)
Vậ MinC = 2 khi và chỉ khi 3 \(\le x\le5\)
c) \(C=\left|x^2+4\right|+3\)
Ta thấy \(x^2+4\ge0\) với mọi x
nên \(\left|x^2+4\right|+3=x^2+4+3=x^2+7\)\(\ge\) 7
Dấu " =" xảy ra khi x = 0
MinC = 7 khi và chỉ khi x = 0
đk xđ : x - 5 > 0 ⇔ x > 5