Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Muốn quy đồng mẫu thức nhiều phân thức ta làm như sau:
-Phân tích các mẫu thức thành nhân tử rồi tìm ẫu tức chung.
-Tìm nhân tử phụ của mỗi mẫu thức.
-Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
*Bài tập:
\(\dfrac{x}{x^2+2x+1}và\)\(\dfrac{3}{5x^2-5}\)
-Ta có:
x2+2x+1=(x+1)2=(x+1)(x+1)
5x2-5=5(x2-1)=5(x-1)(x+1)
\(\Rightarrow\)MTC:5(x-1)(x+1)(x+1)
-NTP:5(x-1)(x+1)(x+1):(x+1)(x+1)=5(x-1)
5(x-1)(x+1)(x+1):5(x-1)(x+1)=x+1
-Quy đồng mẫu thức:
\(\dfrac{x}{\left(x+1\right)\left(x+1\right)}\)=\(\dfrac{5x\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)\left(x+1\right)}\)
\(\dfrac{3}{5\left(x-1\right)\left(x+1\right)}=\dfrac{3\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)\left(x+1\right)}\)
\(\frac{-3}{x^2+6x+8}=\frac{-3}{x\left(x+2\right)+4\left(x+2\right)}=\frac{-3}{\left(x+2\right)\left(x+4\right)}=\frac{-3x+12}{\left(x+2\right)\left(x+4\right)\left(x-4\right)}\)
\(\frac{5}{x^2-16}=\frac{5}{\left(x-4\right)\left(x+4\right)}=\frac{5x+10}{\left(x+2\right)\left(x-4\right)\left(x+4\right)}\)
\(\frac{1}{x^2-2x-8}=\frac{1}{x\left(x-4\right)+2\left(x-4\right)}=\frac{1}{\left(x-4\right)\left(x+2\right)}=\frac{x+4}{\left(x+2\right)\left(x+4\right)\left(x-4\right)}\)
\(\frac{4}{x^2-9}=\frac{4}{\left(x-3\right)\left(x+3\right)}=\frac{4x}{x\left(x-3\right)\left(x+3\right)}\)
\(\frac{1-x}{3x-x^2}=\frac{x-1}{x^2-3x}=\frac{\left(x-1\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}\)
\(\frac{1}{6x^2y^3}=\frac{7x^2}{42x^4y^3},\frac{-5}{21xy^2}=\frac{-10x^3y}{42x^4y^3},\frac{3}{14x^4y}=\frac{3y^2}{14x^4y^3}\)
\(\frac{x+2}{4x-x^2-3}=\frac{-\left(x+2\right)}{x^2-4x+3}=\frac{\left(-x-2\right)\left(2x+5\right)}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}=\frac{-2x^2-9x-10}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)
\(\frac{1}{2x^2+3x-5}=\frac{1}{\left(x-1\right)\left(2x+5\right)}=\frac{x-3}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)
- Muốn qui đồng mẫu thức của nhiều phân thức ta có thể làm như sau:
+ Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.
+ Tìm nhân tử phụ của mỗi mẫu thức.
+ Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
- Quy đồng mẫu hai phân thức trên:
Ta có: x2 + 2x + 1 = (x + 1)2 và 5x2 - 5 = 5(x2 – 1) = 5(x -1)(x + 1)
MTC: 5(x – 1)(x + 1)2
Nhân tử phụ tương ứng: 5(x – 1)(x + 1)
Ta có: