K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 9 2021

a. Xác suất có 1 con trai:

\(C_3^1.0,53^1.\left(1-0,53\right)^2=0,351231\)

b. Xác suất sinh không quá 1 con trai:

\(1-C_3^3.0,53^3.\left(1-0,53\right)^0=0,851123\)

c. Số trai nhiều hơn gái (3 trai 0 gái, 2 trai 1 gái):

\(C_3^3.0,53^3.\left(1-0,53\right)^0+C_3^2.0,53^2.\left(1-0,53\right)^1=0,544946\)

Câu 1 : Một hình nón có bán kính đáy r = 2a và chiều cao h = \(a\sqrt{5}\) . Tính diện tích xung quanh của hình nón đó A. \(12\Pi a^2\) B. \(6\Pi a^2\) C. \(12\Pi a^2\) D. \(\frac{4\Pi}{3}a^3\sqrt{5}\) Câu 2 : Khối nón có độ dài đường sinh l = \(a\sqrt{6}\) và đường cao bằng bán kính đáy . Tính thể tích khối nón đã cho A. \(a^3\sqrt{3}\) B. \(3a^3\sqrt{3}\) C. \(a^3\sqrt{6}\)...
Đọc tiếp

Câu 1 : Một hình nón có bán kính đáy r = 2a và chiều cao h = \(a\sqrt{5}\) . Tính diện tích xung quanh của hình nón đó

A. \(12\Pi a^2\) B. \(6\Pi a^2\) C. \(12\Pi a^2\) D. \(\frac{4\Pi}{3}a^3\sqrt{5}\)

Câu 2 : Khối nón có độ dài đường sinh l = \(a\sqrt{6}\) và đường cao bằng bán kính đáy . Tính thể tích khối nón đã cho

A. \(a^3\sqrt{3}\) B. \(3a^3\sqrt{3}\) C. \(a^3\sqrt{6}\) D. \(3a^3\sqrt{2}\)

Câu 3 : Một hình nón có độ dài đường sinh bằng đường kính đáy . Tính tỉ số \(\frac{S_{xq}}{S_{tp}}\)

A. \(\frac{1}{6}\) B. \(\frac{1}{3}\) C. \(\frac{2}{3}\) D. \(\frac{2}{5}\)

Câu 4 : Thiết diện qua đỉnh của hình nón là tam giác vuông cân có diện tích bằng \(3a^2\) và chiều cao của hình nón bằng \(a\sqrt{2}\) . Tính bán kính đáy của hình tròn

A. \(a\sqrt{6}\) B. 4a C. 3a D. 2a

Câu 5 : Cắt một hình trụ không nắp theo một đường sinh và " trải " lên mặt phẳng ta được một hình chữ nhật có diện tích bằng \(4\Pi a^2\) . Biết độ dài đường sinh bằng 2a , tính thể tích khối trụ đã cho

A. \(4\Pi a^3\) B. \(2\Pi a^3\) C. \(\Pi a^3\) D. \(\frac{2}{3}\Pi a^3\)

0
NV
22 tháng 3 2019

\(V_1=\pi\int\limits^9_0xdx=\frac{81\pi}{2}\)

Gọi \(M\left(a;\sqrt{a}\right)\) (\(0\le a\le9\)) và \(N\left(a;0\right)\) là hình chiếu của M trên Ox

Khi quay AOM quanh Ox sẽ tạo thành hai hình nón chung đáy với bán kính đáy \(r=MN=y_M=\sqrt{a}\); chiều cao lần lượt là \(ON=x_N=a\)\(OM=x_M-x_N=9-a\)

\(\Rightarrow V_2=\frac{1}{3}\pi\left(\sqrt{a}\right)^2\left(a+9-a\right)=3\pi a\)

\(\Rightarrow\frac{81\pi}{2}=6\pi a\Rightarrow a=\frac{27}{4}\) \(\Rightarrow M\left(\frac{27}{4};\frac{3\sqrt{3}}{2}\right)\)

\(\Rightarrow\) diện tích phần giới hạn:

\(S=\int\limits^{\frac{27}{4}}_0\sqrt{x}dx-\frac{1}{2}.\frac{27}{4}.\frac{3\sqrt{3}}{2}=\frac{27\sqrt{3}}{4}-\frac{81\sqrt{3}}{16}=\frac{27\sqrt{3}}{16}\)

Câu 1: Gọi S là diện tích hình phẳng bị giới hạn bởi \(y=ax^3+bx^2+cx+d\) với trục hoành và \(x=a+b,x=c+d\), sao cho S gấp hai lần diện tích tam giác vuông \(HOK\) (O là gốc toạ độ ) với \(H,K\) lần lượt là giao điểm của đường thẳng \(y=\left(a+c\right)x+\frac{b}{d}\) với trục tung và trục hoành. Tìm mối liên hệ của \(a,b,c,d\) . Câu 2: Cho hình chóp \(S.ABCD\) có mặt đáy là hình vuông cạnh \(2a\)....
Đọc tiếp

Câu 1: Gọi S là diện tích hình phẳng bị giới hạn bởi \(y=ax^3+bx^2+cx+d\) với trục hoành và \(x=a+b,x=c+d\), sao cho S gấp hai lần diện tích tam giác vuông \(HOK\) (O là gốc toạ độ ) với \(H,K\) lần lượt là giao điểm của đường thẳng \(y=\left(a+c\right)x+\frac{b}{d}\) với trục tung và trục hoành. Tìm mối liên hệ của \(a,b,c,d\) .
Câu 2: Cho hình chóp \(S.ABCD\) có mặt đáy là hình vuông cạnh \(2a\). \(SA\perp\left(ABCD\right)\)\(SA=a\). Gọi \(M,N\) lần lượt là trung điểm của cạnh \(SB,SC\). Điểm E nằm trên cạnh \(SA\) sao cho \(SE=2EA\). Gọi điểm \(P\) là điểm di động trên cạnh \(SB\). Giả sử \(d\) là độ dài đoạn \(AP\) mà tại vị trị điểm \(P\) thì \(V_{S.MNEP}\) đạt giá trị nhỏ nhất và giả sử \(d_1\) là độ dài đoạn \(AP\) mà tại vị trí điểm \(P\) thì \(V_{S.MNP}\) đạt giá trị lớn nhất. Tính \(d+d_1\) bằng

a) 3a

b) \(\sqrt{3}a\)

c) 4a

d) Kết quả khác

0
18. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(3;-4;0\right)\) , \(B\left(0;2;4\right)\) , \(C\left(4;2;1\right)\) . Tìm tọa độ điểm D thuộc trục Ox sao cho AD = BC A. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\) B. \(D\left(0;-6;0\right)\) C. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(-6;0;0\right)\end{matrix}\right.\) D. \(D\left(6;0;0\right)\) 11. Trong không gian với hệ tọa Oxyz, mặt cầu...
Đọc tiếp

18. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(3;-4;0\right)\) , \(B\left(0;2;4\right)\) , \(C\left(4;2;1\right)\) . Tìm tọa độ điểm D thuộc trục Ox sao cho AD = BC

A. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)

B. \(D\left(0;-6;0\right)\)

C. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(-6;0;0\right)\end{matrix}\right.\)

D. \(D\left(6;0;0\right)\)

11. Trong không gian với hệ tọa Oxyz, mặt cầu \(\left(S\right):\) \(x^2+y^2+z^2-2x+4y-4=0\) cắt mp \(\left(P\right):\) \(x+y-z+4=0\) theo giao tuyến đường tròn \(\left(C\right)\) . Tính diện tích S của đường tròn \(\left(C\right)\)

A. \(S=\frac{2\pi\sqrt{78}}{3}\)

B. \(S=2\pi\sqrt{6}\)

C. \(S=6\pi\)

D. \(S=\frac{26\pi}{3}\)

14. Trong không gian Oxyz, mặt cầu tâm \(I\left(1;2;-1\right)\) cắt mp \(\left(P\right):\) \(x-2y-2z-8=0\) theo một đường tròn có bán kính bằng 4 có pt là

A. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=5\)

B. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\)

C. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\)

15. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(2;-1;3\right)\) , \(B\left(4;0;1\right)\) , \(C\left(-10;5;3\right)\) Vecto nào dưới đây là VTPT của mp \(\left(ABC\right)\)

A. \(\overrightarrow{n_1}\left(1;2;0\right)\)

B. \(\overrightarrow{n_2}\left(1;2;2\right)\)

C. \(\overrightarrow{n_3}\left(1;8;2\right)\)

D. \(\overrightarrow{n_4}\left(1;-2;2\right)\)

D. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=3\)

2
NV
22 tháng 6 2020

14.

\(d\left(I;\left(P\right)\right)=\frac{\left|1-2.2+2-8\right|}{\sqrt{1^2+\left(-2\right)^2+\left(-2\right)^2}}=3\)

Áp dụng định lý Pitago:

\(R=\sqrt{4^2+d^2\left(I;\left(P\right)\right)}=\sqrt{4^2+3^2}=5\)

Phương trình mặt cầu:

\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\)

15.

\(\overrightarrow{AB}=\left(2;1;-2\right)\) ; \(\overrightarrow{AC}=\left(-12;6;0\right)\)

\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(12;24;24\right)=12\left(1;2;2\right)\)

\(\Rightarrow\) Mặt phẳng (ABC) nhận \(\left(1;2;2\right)\) là 1 vtpt

NV
22 tháng 6 2020

18.

\(D\in Ox\Rightarrow D\left(a;0;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AD}=\left(a-3;4;0\right)\\\overrightarrow{BC}=\left(4;0;-3\right)\end{matrix}\right.\)

\(AD=BC\Leftrightarrow\left(a-3\right)^2+4^2=4^2+\left(-3\right)^2\)

\(\Leftrightarrow\left(a-3\right)^2=9\Rightarrow\left[{}\begin{matrix}a=0\\a=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)

11.

Mặt cầu (S) tâm \(I\left(1;-2;0\right)\) bán kính \(R=\sqrt{1^2+\left(-2\right)^2-\left(-4\right)}=3\)

\(d\left(I;\left(P\right)\right)=\frac{\left|1-2-0+4\right|}{\sqrt{1^2+1^2+\left(-1\right)^2}}=\sqrt{3}\)

Gọi bán kính đường tròn (C) là \(r\)

Áp dụng định lý Pitago:

\(r=\sqrt{R^2-d^2\left(I;\left(P\right)\right)}=\sqrt{6}\)

Diện tích đường tròn: \(S=\pi r^2=6\pi\)

NV
23 tháng 8 2020

\(\left(C_m\right)\) giao d: \(\frac{2x-m^2}{x+1}=m-x\Leftrightarrow x^2-\left(m-3\right)x-m^2-m=0\)

\(\Delta=5m^2-2m+9\Rightarrow x_A=\frac{m-3-\sqrt{5m^2-2m+9}}{2}\)

\(\left(C_m\right)\) giao d': \(\frac{2x-m^2}{x+1}=2-m-x\)

\(\Leftrightarrow2x-m^2=\left(2-m\right)x-x^2+2-m-x\)

\(\Leftrightarrow x^2+\left(m+1\right)x-m^2+m-2=0\)

\(\Delta=5m^2-2m+9\Rightarrow x_D=\frac{-m-1+\sqrt{5m^2-2m+9}}{2}\)

\(x_Ax_D=-3\Leftrightarrow\left(m-3-\sqrt{5m^2-2m+9}\right)\left(-m-1+\sqrt{5m^2-2m+9}\right)=-12\)

\(\Leftrightarrow-6m^2+4m+6+\left(2m-2\right)\sqrt{5m^2-2m+9}=0\)

\(\Leftrightarrow-\left(5m^2-2m+9\right)+2\left(m-1\right)\sqrt{5m^2-2m+9}-m^2+2m+15=0\)

Đặt \(\sqrt{5m^2-2m+9}=t\)

\(\Rightarrow-t^2+2\left(m-1\right)t-m^2+2m+15=0\)

\(\Delta'=m^2-2m+1-\left(m^2-2m-15\right)=16\)

\(\Rightarrow\left[{}\begin{matrix}t=m-5\\t=m+3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5m^2-2m+9}=m-5\left(m\ge5\right)\\\sqrt{5m^2-2m+9}=m+3\left(m\ge-3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4m^2+8m-16=0\left(vn\right)\\4m^2-8m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

Có 2 phần tử

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S) A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\) Câu 2 : Công thức tính thể tích khối cầu có bán kính R ? A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\) Câu 3 : Một hình hộp chữ nhật có ba kích thước...
Đọc tiếp

Câu 1 : Mặt cầu (S) có bán kính R = \(a\sqrt{2}\) . Tính diện tích của mặt cầu (S)

A. \(8a^2\) B. \(4\Pi a^2\) C. \(8\Pi a^2\) D. \(16\Pi a^2\)

Câu 2 : Công thức tính thể tích khối cầu có bán kính R ?

A. \(\frac{4}{3}\Pi R^2\) B. \(\frac{4}{3}\Pi R^3\) C. \(\frac{1}{3}\Pi R^3\) D. \(\Pi R^3\)

Câu 3 : Một hình hộp chữ nhật có ba kích thước tương ứng là a , 2a , 2a . Tính thể tích khối cầu ngoại tiếp hình hộp

A. \(\frac{9\Pi a^3}{5}\) B. \(\frac{9\Pi a^3}{4}\) C. \(9\Pi a^3\) D. \(\frac{9\Pi a^3}{2}\)

Câu 4 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a , AD = \(a\sqrt{3}\) . Cạnh bên SA vuông góc với đáy và SC tạo với đáy 1 góc 600 . Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ABCD

A. Tâm là trung điểm SC , R = 2a

B. Tâm là trung điểm SC , R = 4a

C. Tâm trùng với tâm của đáy , R = a

D. Tâm là trung điểm SD , R = \(\frac{a\sqrt{15}}{2}\)

Câu 5 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , cạnh bên SA vuông góc với đáy , cạnh bên SB bằng \(a\sqrt{3}\) . Tính thể tích khối cầu ngoại tiếp S.ABCD

A. \(\frac{4}{3}\Pi a^3\) B. \(\frac{16\sqrt{2}}{3}a^3\) C. \(12\sqrt{3}a^3\) D. \(\frac{4}{3}a^3\)

HELP ME !!!!!!!!!!!!!

4
AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 5:

Tương tự câu 4, ta thấy tâm $I$ của khối cầu ngoại tiếp $S.ABCD$ là trung điểm $SC$

Theo định lý Pitago:

$SA^2=SB^2-AB^2=(a\sqrt{3})^2-a^2=2a^2$

$AC^2=AB^2+BC^2=a^2+a^2=2a^2$

$SC=\sqrt{SA^2+AC^2}=\sqrt{2a^2+2a^2}=2a$

Do đó: $R=SI=IC=\frac{SC}{2}=a$

Thể tích khối cầu ngoại tiếp S.ABCD là:

$V=\frac{4}{3}\pi R^3=\frac{4}{3}\pi a^3$

Đáp án A

 

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Câu 4:

$AC=\sqrt{AB^2+AD^2}=2a$

$(SC, (ABCD))=\widehat{SCA}=60^0$

$\Rightarrow \frac{SA}{AC}=\tan \widehat{SCA}=\tan 60^0=\sqrt{3}$

$\Rightarrow SA=\sqrt{3}.AC=2\sqrt{3}a$

$SC=\sqrt{SA^2+AC^2}=\sqrt{(2\sqrt{3}a)^2+(2a)^2}=4a$

Gọi $I$ tâm mặt cầu ngoại tiếp hình chóp. $IS=IA=IC$ nên $I$ là tâm ngoại tiếp tam giác $SAC$

$\Rightarrow I$ là trung điểm $SC$.

Bán kính $IS=IC=\frac{AC}{2}=\frac{4a}{2}=2a$

Đáp án A

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\) A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1) 2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\) A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5) 3 tập nghiệm của bất pt...
Đọc tiếp

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)

A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)

2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)

A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)

3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)

4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\)

A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )

5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)

A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1

6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là

A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)

7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)

8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0

A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)

9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a

10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\)

11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\)

A 2019 B 2020 C 2021 D 2018

12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a

13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)

14 nếu \(log_ab=p\)\(log_aa^2.b^4\)bằng

A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)

15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng

A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)

16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng

6
NV
2 tháng 7 2020

14.

\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)

15.

\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)

\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)

\(\Leftrightarrow log_a^2b-2log_ab+1=0\)

\(\Leftrightarrow\left(log_ab-1\right)^2=0\)

\(\Rightarrow log_ab=1\Rightarrow a=b\)

16.

\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)

\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)

NV
2 tháng 7 2020

11.

\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)

\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)

\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)

\(\Rightarrow\)\(-2+2020+1=2019\) nghiệm

12.

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)

\(\Rightarrow3< x< 5\Rightarrow b-a=2\)

13.

\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)

\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)

NV
4 tháng 10 2019

Bài này cứ giải thẳng ra thôi có vấn đề gì đâu nhỉ?

\(f'\left(x\right)=3x^2+6x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=2\\x=-2\Rightarrow y=6\end{matrix}\right.\) \(\Rightarrow A\left(-2;6\right);B\left(0;2\right)\)

Hàm trùng phương thì dễ hơn, nếu thuộc lý thuyết ta nhận xét được ngay: do hệ số a=1>0 nên cực đại của hàm xảy ra tại \(x=0\Rightarrow y=-2\Rightarrow C\left(0;-2\right)\)

\(AB=2\sqrt{5};AC=2\sqrt{17};BC=4\) \(\Rightarrow S=4+2\sqrt{5}\)

Loại đáp án A và C, nhẩm được ngay trung điểm AC có tọa độ \(\left(-1;2\right)\) thay vào D thỏa mãn \(\Rightarrow D\) đúng

Hoặc cẩn thận hơn thì mất tầm 30s để viết pt trung trực cũng được

NV
12 tháng 4 2019

Bài này chỉ nên làm theo kiểu trắc nghiệm, không bao giờ nên giải tự luận vì theo mình thì nó quá là trâu :(

Trắc nghiệm thì ta có sẵn 4 mặt phẳng rồi, gọi mặt phẳng đó là (P) thì \(AB\perp\left(P\right)\Rightarrow AM\perp\left(P\right)\Rightarrow\) phương trình \(\Delta'\) chính là phương trình đường thẳng qua M và \(\perp\left(P\right)\Rightarrow\) nhận vtpt của (P) là 1 vtcp \(\Rightarrow\) dễ dàng viết được 4 pt đường thẳng \(\Delta'\) chỉ sau 5s

Đường thẳng này trước hết phải cắt \(\Delta\) nên ta tìm giao điểm của \(\Delta'\)\(\Delta\), pt nào ko cho giao điểm \(\Rightarrow\) loại ngay, nếu có giao điểm thì tìm tiếp giao điểm của \(\Delta'\) với mặt cầu và xem hoành độ có nguyên ko, nguyên \(\Rightarrow\) kiểm tra tỉ lệ khoảng cách, ko nguyên \(\Rightarrow\) loại.

Còn tự luận thì ý tưởng của mình thế này, nhưng chắc phải làm cả tiếng đồng hồ mất:

Chia làm 2 trường hợp: \(\overrightarrow{AB}=3\overrightarrow{AM}\)\(\overrightarrow{AB}=-3\overrightarrow{AM}\), nếu hên sẽ đúng luôn ngay từ trường hợp đầu tiên :D

Gọi \(A\left(a+3;-a-1;a-2\right)\Rightarrow\) từ tỉ lệ vecto suy ra tọa độ B có 3 yếu tố phụ thuộc vào \(a\), thay tọa độ đó vào pt mặt cầu \(\Rightarrow\) cái nào có hoành độ nguyên thì nhận

- Tìm được tọa độ B \(\Rightarrow\) tọa độ A \(\Rightarrow\) viết pt trung trực

12 tháng 4 2019

Cảm ơn bạn, mình giải được rồi ạ.

NV
12 tháng 4 2019

Bài toán quy về tìm phương trình đường vuông góc chung:

\(d_1\): \(\left\{{}\begin{matrix}x=2+t\\y=1-t\\z=2-t\end{matrix}\right.\)

- \(\left[\overrightarrow{u_{d1}};\overrightarrow{u_{d2}}\right]=\left(1;-1;2\right)\Rightarrow\)(P) chứa \(d_2\)\(\left(P\right)//d_1\) có vtpt \(\overrightarrow{n_{\left(P\right)}}=\left(1;-1;2\right)\)

- (Q) chứa \(d_2\)\(\left(Q\right)\perp\left(P\right)\Rightarrow\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{d2}}\right]=\left(2;-2;-2\right)=2\left(1;-1;-1\right)\)

\(\Rightarrow\) Phương trình (Q):

\(1\left(x-3\right)-1\left(y-2\right)-1\left(z-5\right)=0\Leftrightarrow x-y-z+4=0\)

Tọa độ A:

\(2+t-\left(1-t\right)-\left(2-t\right)+4=0\Rightarrow t=-1\Rightarrow A\left(1;2;3\right)\)

Đáp án ?!

12 tháng 4 2019

Mình cũng tính ra y vậy. Bài này sai đáp án rồi.