Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Gọi vận tốc của xuồng máy khi đi trong hồ yên lặng là \(x\) (km/h), \(x>3\)
Vận tốc của xuồng khi đi xuôi dòng sông là : \(x+3\) (km/h)
Vận tốc của xuồng khi đi ngược dòng sông là : \(x-3\) (km/h)
*Gọi vận tốc riêng của thuyền là x (km/h) (1<x < 60)
Vận tốc khi xuồng xuôi dòng là: x + 1 (km/h)
Vận tốc khi xuồng ngược dòng là: x - 1(km/h)
*Thời gian xuồng xuôi dòng từ A --> B là: 60/(x + 1) (h)
Thời gian xuồng xuôi dòng đến bến C là: 25/(x - 1) (h)
30 phút = 1/2 (h)
*Vì thời gian kể từ lúc đi đến lúc quay trở lại đến bến C hết tất cả là 8 giờ nên ta có PT:
60/(x + 1) + 25/(x - 1) + 1/2 = 8
=> 60.2.(x - 1) + 25.2(x + 1) + (x - 1)(x + 1) = 8.2(x - 1)(x + 1)
<=> 120x - 120 + 50x + 50 + x^2 - 1 = 16x^2 - 16
<=> 15x^2 - 170x + 55 = 0
delta' = (- 85)^2 - 55.15 = 6400 = 80^2 > 0
=> PT có 2 nghiệm pb:
x1 = (85 - 80)/15 = 1/3 (loại)
x2 = (85 + 80)/15 = 11 (thỏa mãn điều kiện bài ra)
Vậy vận tốc xuồng máy khi nước yên lặng là 11km/h
Gọi vận tốc riêng của cano là x>3 (km/h)
Thời gian cano xuôi dòng 30km và ngược dòng 28km: \(\dfrac{30}{x+3}+\dfrac{28}{x-3}\) (giờ)
Thời gian cano đi trên 58,5km mặt nước lặng: \(\dfrac{58,5}{x}\) giờ
Theo bài ra ta có pt:
\(\dfrac{30}{x+3}+\dfrac{28}{x-3}=\dfrac{58,5}{x}\)
\(\Leftrightarrow x^2+12x-1053=0\Rightarrow\left[{}\begin{matrix}x=27\\x=-39\left(loại\right)\end{matrix}\right.\)
Khoảng cách giữa hai bến sông A và B là 60km. Một xuồng máy đi xuôi dòng từ A đến B nghỉ 30 phút tại bến B rồi quay trở lại đi ngược dòng 25km để đến bến C. Thời gian kể từ lúc đi đến lúc quay trở lại đến bến C là hết tất cả 8 giờ. Biết rằng vận tốc nước chảy là 1km/h.
Vậy vận tốc xuồng máy khi nước yên lặng là ............. km/h.
Để đường thẳng y = ax đi qua giao điểm của hai đường thẳng 2x - 3y = 8 và 7x - 5y = -5 thì giá trị của a là ............
Câu hỏi tương tự Đọc thêm
Toán lớp 9Violympic
Khoảng cách giữa hai bến sông A và B là 60km. Một xuồng máy đi xuôi dòng từ A đến B nghỉ 30 phút tại bến B rồi quay trở lại đi ngược dòng 25km để đến bến C. Thời gian kể từ lúc đi đến lúc quay trở lại đến bến C là hết tất cả 8 giờ. Biết rằng vận tốc nước chảy là 1km/h.
Vậy vận tốc xuồng máy khi nước yên lặng là ............. km/h.
Để đường thẳng y = ax đi qua giao điểm của hai đường thẳng 2x - 3y = 8 và 7x - 5y = -5 thì giá trị của a là ............
Câu hỏi tương tự Đọc thêm
Toán lớp 9Violympic
ai tích mình tích lại
Gọi vận tốc của xuồng lúc đi là x (km/h, x > 5).
⇒ Vận tốc của xuồng lúc về là x – 5 (km/h).
Thời gian đi là: (h)
Quãng đường về là: 120 + 5 = 125 km
Thời gian về là: (h)
Theo bài ra ta có phương trình:
Có a = 1; b = -10; c = -600 ⇒ Δ’ = (-5)2 – 1.(-600) = 625
Phương trình có hai nghiệm phân biệt:
Trong hai nghiệm chỉ có nghiệm x = 30 thỏa mãn điều kiện.
Vậy vận tốc xuồng lúc đi là 30 km/h.
Gọi x (km/h) là vận tốc thuyền khi đi trên hồ. Điều kiện: x > 3
Khi đó vận tốc khi đi xuôi dòng trên sông là x + 3 (km/h)
vận tốc khi đi ngược dòng trên sông là x – 3 (km/h)
thời gian thuyền đi xuôi dòng là 30/(x + 3) (giờ)
thời gian thuyền đi ngược dòng là 28/(x - 3) (giờ)
thời gian thuyền đi trên hồ yên lặng là (59,5)/x (giờ)
Theo đề bài, ta có phương trình:
Giá trị x = -21 không thỏa mãn điều kiện bài toán.
Vậy vận tốc khi thuyền đi trên mặt hồ yên lặng là 17km/h.