Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có vẻ lẻ quá bạn.
\(W_t=4W_đ\Rightarrow W_đ=\dfrac{W_t}{4}\)
Cơ năng: \(W=W_đ+W_t=W_t+\dfrac{W_t}{4}=\dfrac{5}{4}W_t\)
\(\Rightarrow \dfrac{1}{2}kA^2=\dfrac{5}{4}.\dfrac{1}{2}kx^2\)
\(\Rightarrow x = \pm\dfrac{2}{\sqrt 5}A\)
M N O α α
Thời gian nhỏ nhất ứng với véc tơ quay từ M đến N.
\(\cos\alpha=\dfrac{2}{\sqrt 5}\)\(\Rightarrow \alpha =26,6^0\)
Thời gian nhỏ nhất là: \(\Delta t=\dfrac{26,6\times 2}{360}.T=\dfrac{26,6\times 2}{360}.\dfrac{2\pi}{20}=0.046s\)
Mỗi câu hỏi bạn nên hỏi 1 bài thôi để tiện trao đổi nhé.
Biểu diễn dao động bằng véc tơ quay ta có:
M x 2 1 O N
Để vật qua li độ 1 cm theo chiều dương thì véc tơ quay qua N.
Trong giây đầu tiên, véc tơ quay đã quay 1 góc là: \(5\pi\), ứng với 2,5 vòng quay.
Xuất phát từ M ta thấy véc tơ quay quay đc 2,5 vòng thì nó qua N 3 lần do vậy trong giây đầu tiên, vật qua li độ 1cm theo chiều dương 3 lần.
Bạn xem thêm lí thuyết phần này ở đây nhé
Phương pháp véc tơ quay và ứng dụng | Học trực tuyến
Bài 1 :
T = 2π / ω = 0.4 s
Vật thực hiện được 2 chu kì và chuyển động thêm trong 0.2 s (T/2 ) nữa
1 chu kì vật qua vị trí có li độ x=2cm theo chiều dương được "1 " lần
⇒ 2 ________________________________________... lần
phần lẻ 0.2s (T/2) , (góc quét là π ) (tức là chất điểm CĐ tròn đều đến vị trí ban đầu và góc bán kính quét thêm π (rad) nữa, vị trí lúc nầy:
x = 1 + 2cos(-π/2 + π ) = 1, (vận tốc dương) vật qua vị trí có li độ x=2cm theo chiều dương thêm 1 lần nữa
(từ VT ban đầu (vị tri +1 cm ) –> biên dương , về vị trí có ly độ x = +1 cm
do đó trong giây đầu tiên kể từ lúc t=0 vật qua vị trí có li độ x=2cm theo chiều dương được 3 lần
Chọn A
\(\omega_1=\frac{2\pi}{T_1}=\frac{10\pi}{3}\); \(\omega_2=\frac{2\pi}{T_2}=\frac{10\pi}{9}\)
\(\varphi_2=\omega_2t;\omega_1t=\pi-\varphi_2\)
\(\Rightarrow t=\frac{\pi}{\omega_1+\omega_2}=0,225\left(s\right)\)
\(x=3\sin(5\pi t + \frac \pi 6) = 3\cos(5\pi t - \frac{\pi}{3}) \)(cm)
Tần số: f = 2,5Hz
Biểu diễn bằng véc tơ quay ta có:
3 -3 M 1 -1 O x
Véctơ quay xuất phát từ M, quay 2,5 vòng (ứng với 2,5Hz), khi đó, hình chiếu véc tơ quay qua -1cm là 5 lần.
Do vậy dao động qua li độ -1cm 5 lần trong 1s đầu tiên.
\(x=3\sin\left(5\pi t+\frac{\pi}{6}\right)=3\cos\left(5\pi t-\frac{\pi}{3}\right)\)(cm).
\(x_0=\frac{3}{2}=\frac{R}{2}\);\(T=\frac{2\pi}{5\pi}=\frac{2}{5}\left(s\right)\)
\(\Delta_t=1\left(s\right)=2T+\frac{T}{2}\)
*Xét 2T đầu: đi đc 4 lần.
*Xét \(\frac{T}{2}\) cuối:
\(x=-1=\frac{-R}{3}\)
0 R R/2 -R -R/3
Trong T/2, vật đi đc từ \(\frac{R}{2}\) đến \(\frac{-R}{2}\)
Vậy vật đi qua x=-1cm trong 1 s đầu tiên 5 lần.
#Walker
4 x O -4 M0 M1 M2 -2
Chu kì dao động: T = 2π/(2π/3) = 3s
Véc tơ quay biểu diễn dao động trên xuất phát từ M0 và quay ngược chiều kim đồng hồ.
Cứ mỗi lần véc tơ quay đi qua M1 và M2 thì dao động điều hòa của chất điểm lại qua vị trí -2cm.
+ Véc tơ quay quay được 1005 vòng thì chất điểm qua -2cm số lần là: 1005 x 2 = 2010 lần.
+ Lần cuối cùng chất điểm qua -2cm ứng với véc tơ quay từ M0 đến M1, với góc quay: 90 + 30 = 1200
Vậy thời điểm chất điểm qua li độ -2cm lần 2011 là: 1005T + 120/360 T = (1005+1/3)T = (1005 + 1/3). 3 = 3016 s
Áp dụng công thức: \(A^2 = x^2 +\frac{v^2}{\omega^2} \) \(\Rightarrow A^2 = 3^2 +\frac{(60\sqrt3)^2}{\omega^2} = (3\sqrt2)^2 +\frac{(60\sqrt2)^2}{\omega^2} \)
Giải hệ trên ta được \(\omega = 20rad/s; \ A =6cm\)
Chọn B
+ Khi Wđ = 8Wt => x = ±A/3 = ±4/3 cm và T = 2s.
+ t1 = 1/6s => x1 = 0cm; t2 = 13/3 s => x2 = -2cm.
+ Ta thấy cứ 1T vật đi qua 2 vị trí x = ±4/3 cm tất cả 4 lần.
=> Sau 2T vật đi qua 8 lần.
Khi đó, vật ở vị trí x1 = 0cm (VTCB) đi tiếp lượng T/12 đến x2 = -2cm qua vị trí x = -4/3 cm một lần nữa. Ta có hình ảnh minh họa hình trên.
=> Tổng cộng vật đi qua vị trí động năng bằng 8 lần thế năng 9 lần.