K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)

27 tháng 7 2016

Ta có :

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

15 tháng 8 2020

\(\left\{{}\begin{matrix}v=\omega A\\a=\omega^2A\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10\pi=\omega A\\2=\omega^2A\end{matrix}\right.\Rightarrow\omega=\frac{\pi}{5}\left(rad/s\right)\) \(\Rightarrow A=\frac{10\pi}{\frac{\pi}{5}}=50\left(cm\right)\)

Tại thời điểm t=0 vật qua VTCB theo chiều dương\(\Rightarrow x=0=A\cos\varphi\Rightarrow\varphi=\pm\frac{\pi}{2}\) ,\(v>0\Rightarrow\varphi=-\frac{\pi}{2}\)

\(\Rightarrow x=50\cos\left(\frac{\pi}{5}t-\frac{\pi}{2}\right)\)

24 tháng 7 2016

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

1 tháng 6 2016
Đáp án đúng: A
 

Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)

8 tháng 10 2015

Áp dụng: \(a = -\omega^2 x =-(2\pi)^2.3 = - 120\ cm/s^2 \)

12 tháng 9 2016

a) \(v_{max}=\omega.A\Rightarrow \omega=\dfrac{10\pi}{5}=2\pi(rad/s)\)

Vậy PT dao động là: \(x=5\cos(2\pi t+\dfrac{\pi}{3})cm\)

b) Áp dụng CT độc lập:

\(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow 5^2=3^2+\dfrac{v^2}{(2\pi)^2}\)

\(\Rightarrow v=\pm 8\pi(cm/s)\)

 

5 tháng 6 2016

Biên độ: \(A^2=x^2+\dfrac{v^2}{\omega^2}=(2\sqrt 3)^2+\dfrac{(20\sqrt 2)^2}{(10\sqrt 2)^2}\)

\(\Rightarrow A = 4cm\)

\(\cos\varphi = \dfrac{x}{A}=\dfrac{2\sqrt 3}{4}\)

\(v>0\Rightarrow \varphi < 0\)

Suy ra: \(\varphi=-\dfrac{\pi}{6}(rad)\)

Vậy: \(x=4\cos(10\sqrt 2 t-\dfrac{\pi}{6})(cm)\)

6 tháng 6 2016

\(A^2=x^2+\frac{v^2}{\omega^2}\Rightarrow A=4cm.\)

 

 Hỏi đáp Vật lý\

Điểm M thỏa mãn có vận tốc dương và li độ 2 căn 3. Tại đó pha ban đầu là -30 độ.

=> \(x=4\cos\left(10\sqrt{2}t-\frac{\pi}{6}\right).\)