Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu kì riêng của con lắc: \(T=2\pi\sqrt{\frac{l}{g}}=2,8s\)
Vậy khi chu kì của ngoại lực tăng từ 2s đến 4s thì biên độ ̣con lắc tăng rồi giảm
Đáp án D
Lực kéo về
\(F = -kx= -k.A.\cos (\omega t +\varphi)\)
So sánh với phương trình \(F=-0.8\cos 4t(N)\) => \(\omega = 4\)(rad/s) và \( k.A = 0,8 \)
\(=> m\omega^2 A = 0,8 => A = \frac{0,8}{m\omega^2}= \frac{0,8}{0,5.4^2}= 0,1 m = 10cm.\)
Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Động năng và thế năng biến thiên với tân số \(f' = 2f\) bạn nhé.
Giải thích như sau:
\(W_{dongnang} = \frac{1}{2} mv^2 = \frac{1}{2}m.A^2 \omega^2 sin^2 (\omega t+\varphi)= \frac{A^2 \omega^2m}{2} \frac{1-\cos(2\omega t + 2 \varphi)}{2}= A_{dongnang}.\cos (2 \omega t - \varphi')+const.\) Dựa và phân tích trên thấy rằng động năng có tấn số góc mới là \(2 \omega\) tương ứng với tấn số \(f' = 2f\). Thế năng cũng tương tự.
Chọn đáp án.D
Chọn đáp án B
Chu kỳ dao động của vật là: 1/f