Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu kì \(T=2\pi/\omega=2s\)
Bước sóng: \(\lambda=v.T=20.2=40cm\)
M cùng pha với O suy ra \(OM=k\lambda=40k(cm)\)
NM gần nhau nhất dao động vuông pha suy ra \(MN=\dfrac{\lambda}{4}=10cm\)
Căn cứ theo các đáp án ta có thể chọn C là đáp án đúng.
Hai điểm có cùng biên độ 2 mm đối xứng nhau qua nút gần nhất và hai điểm có biên độ 3 mm nằm đồi xứng nhau qua bụng gần nhất. Áp dụng công thức tình biên độ điểm, ta có hệ phương trình:
Gọi biên độ sóng tại bụng là 2a.
Ta có : \(\frac{1}{a^2}=\frac{9}{4a^2}=1\rightarrow a=\frac{2}{\sqrt{13}}\)
Xét: \(2a\sin\frac{2\pi x}{\lambda}=2\rightarrow2\lambda=54cm\Rightarrow\lambda=27cm\)
Vậy chọn đáp án A.
Đáp án C
+ Khoảng cách ngắn nhất giữa hai điểm dao động ngược pha là nửa bước sóng
∆ x = λ 2 = v T 2 = 0 , 5 m
Đáp án D
HD: Khoảng cách giữa hai điểm gần nhau nhất dao động ngược pha là nửa bước sóng 0,5 λ = 1
\(\lambda =\frac{v}{f}=\frac{50}{10}=5cm.\)
Điểm M ngược pha với điểm I khi: \(\triangle \phi=\phi_I-\phi_M = 2\pi \frac{d_1-d_{1}^{'}}{\lambda}=(2k+1)\pi \Rightarrow d_1-d_1^{'}=(2k+1)\frac{\lambda}{2}\)
Để điểm M gần I nhất thì hiệu d1 - d1' cũng phải nhỏ nhất khi đó k chỉ nhận giá trị nhỏ nhất là k = 0.
\(d_{1}-d_{1}^{'}=(2.0+1)\frac{5}{2}=2.5cm\Rightarrow d_1 = 7.5cm.\)
\(\Rightarrow MI= \sqrt {d_1^{2}-d_1^{'2}}\) = \(\sqrt{7.5^2-2.5^2}=\sqrt{50}cm\)
Ta có: \(\lambda=\frac{v}{f}=\frac{80}{10}=8\left(cm\right)\)
\(\Rightarrow d=\frac{\lambda}{4}=\frac{8}{4}=2\left(cm\right)\)
Vậy chọn B.
Đáp án B