Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Nx: (x+1)2008>=0 với mọi x
=>20- (x+1)2008< hoặc = 20
=> GTLN của A là 20 tại (x+1)2008=0
=> x+1=0
=> x=-1
Vậy GTLN của A là 20
b,Nx: /3-x/> hoặc= 0 với mọi x
=>1010-/3-x/ < hoặc = 0
=>GTLN của B là 1010 tại /3-x/=0
=>3-x=0
=>x=3
c, Nx : (x-1)2 > hoặc = 0
=> (x-1)2 +90 > hoặc = 90
=> GTNN của C là 90 tại (x-1)2=0
=> x-1=0
=> x=1
Vậy GTNN của C là 90
d, Nx: /x+4/> hoặc =0
=> /x+4/ +2015 > hoặc = 2015 với mọi x
=>GTNN của D là 2015 tại /x+4/=0
=> x+4=0
=> x= -4
Vậy GTNN của D là 2015
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
ta có \(\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge\left|\left(x-a\right)+\left(x-b\right)+\left(c-x\right)+\left(d-x\right)\right|=\left|c+d-a-b\right|=c+d-a-b\)( do a<b<c<d => c-a>0 và d-b>0)
vậy Min A= c+d-a-b
Đáp án đúng : D