Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(W_L+W_C = W_{Cmax}\)
mà \(W_{d} = 2 W_t\) => \(W_{Cmax} = \frac{3}{2}W_C=> \frac{1}{2}CU_0^2 = \frac{3}{2}.\frac{1}{2}Cu^2.\)
=> \(u^2 = \frac{2}{3}U_0^2=> u = \pm \frac{2\sqrt{2}}{\sqrt{3}} \approx \pm 1,63 V.\)
Chọn đáp án \(D.1,63V.\)
\(W= W_{Cmax}=W_C+W_L\)
=> \(W_L = W_{Cmax}-W_C= \frac{1}{2}C.(U_0^2-u^2)= 5.10^{-7}J.\)
Ta có: \(W=W_t+W_d\)
\(\Leftrightarrow W_t=W_{dmax}-W_d\)
\(=\frac{1}{2}C.U^2_0-\frac{1}{2}Cu^2\)
\(=5.10^{-5}J\)
Hiệu điện thế cực đại giữa hai bản tụ trong khung dao động bằng 6V6V, điện dung của tụ bằng 1μF1μF . Biết dao động điện từ trong khung năng lượng được bảo toàn, năng lượng từ trường cực đại tập trung ở cuộn cảm bằng
A.18.10-6 J.
B.0,9.10-6 J.
C.9.10-6 J.
D.1,8.10-6 J.
\(C = \frac{1}{\omega^2.L}= 5.10^{-6}F.\)
\(U_0 = \frac{q_0}{C}= \frac{I_0}{C.\omega}= \frac{I_0.\sqrt{L}}{\sqrt{C}} = 8V.\)
\(i = I = \frac{I_0}{\sqrt{2}}. \)
\(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
=> \(\left(\frac{u}{U_0}\right)^2 = 1- \left(\frac{i}{I_0}\right)^2 = 1 - \frac{1}{2}= \frac{1}{2}\)
=> \(u = \frac{1}{\sqrt{2}}U_0= 4\sqrt{2}V.\)
Áp dụng công thức tính năng lượng điện từ trường ta có
W = Wđ = Wt \(\Rightarrow\frac{1}{2}LI_0^2=\frac{1}{2}lI^2+\frac{1}{2}Cu^2\)
\(\Rightarrow u=\sqrt{\left(I_0^2-I^2\right)\frac{L}{C}}\Rightarrow u=\)\(\sqrt{\frac{0,1}{10^{-5}}\left(0,05^2-0,02^2\right)}=4\left(V\right)\)
chọn A
Đáp án A
Phương pháp: Sử dụng định luật bảo toàn năng lượng
Cách giải:
Ta có: