K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019

Đáp án A

Bước 1. Tính số cách lấy ra 8 viên bi bất kì. có C 16 8  cách.

Bước 2. Tính số cách lấy ra 8 viên bi không có màu vàng mà chỉ có hai màu xanh và đỏ

Bước 3. Tính số cách lấy ra 8 viên bi không có màu đỏ mà có hai màu xanh và vàng. 

Bước 4. Tính số cách lấy ra 8 viên bi không có màu xanh mà chỉ có hai màu đỏ và vàng.

 Vậy có tất cả C 16 8 - ( 495 + 165 + 9 ) = 12201  cách

20 tháng 12 2016

đề nghị khi đăng câu hỏi nên ấn 1 lần, sau ns sẽ hiện ra, tốn S ==

23 tháng 12 2016

đề sai

phải là 46/57

27 tháng 7 2018

Đáp án A

Bước 1.

Tính số cách lấy ra 8 viên bi bất kì có  C 16 8   c á c h

Bước 2

Tính số cách lấy ra 8 viên bi không có màu vàng mà chỉ có hai màu xanh và đỏ.

Bước 3

Tính số cách lấy ra 8 viên bi không có màu đỏ mà có hai màu xanh và vàng.

Bước 4

Tính số cách lấy ra 8 viên bi không có màu xanh mà chỉ có hai màu đỏ và vàng

Vậy có tất cả 1221 cách

22 tháng 3 2022

TL

Lần lấy 1: Xác suất để có bi tím: 10:30 = 1/3

Lần lấy 2: Xác suất để có bi tím: 9:29

Lần lấy 3: Xác suất để có bi tím: 8:28 = 2/7

=> Xác suất để có cả 3 bi tím: 1/3 x 9/29 x 2/7 = 18/609

Mình không chắc có đúng không, bạn kiểm tra hộ mình nhé

Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!

13 tháng 1 2018

23 tháng 5 2017

Sử dụng phương pháp gián tiếp:

Lấy ra 9 viên bi trong 15 viên bi bất kỳ, có    C 15 9 cách.

Trường hợp 1: lấy 9 viên bi chỉ có 2 màu là xanh và đỏ, có C 11 9   cách.

Trường hợp 2: lấy 9 viên bi chỉ có 2 màu là xanh và vàng, có C 9 9   cách.

Trường hợp 3: lấy ra 9 viên bi chỉ có màu đỏ và vàng, có C 10 9   cách.

Vậy có : C 15 9 - ( C 11 9 + C 9 9 + C 10 9 ) = 4984 cách.

Chọn C.

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)