Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)
Năng lượng liên kết riêng của hạt nhân
\(W_{lkr}= \frac{W_{lk}}{A} = \frac{(Zm_p+(A-Z)m_n-m_{Be})c^2}{A}\)
\( = \frac{0,0679.931}{10}= 6,3215MeV.\)
ban đầu bản phải viết phương trình ra mới làm được loại này :
Li73 +11p => 2. 42X (heli)
sau đó dùng ct: ΔW=(mtrước -msau).c2 => 1 hạt LI tạo RA 2 hạt heli và bao nhiêu năng lượng =>> 1,5gX là bao nhiêu hạt sau đó nhân lên.
\(^1_1p+^7_3Li\rightarrow ^4_2X + ^4_2X\)
Năng lượng toả ra của phản ứng: \(W_{toả}=(1,0087+7,0744-2.4,0015).931=74,5731MeV\)
Số hạt X là: \(N=\dfrac{1,5}{4}.6,02.10^{23}=2,2575.10^{23}\)(hạt)
Cứ 2 hạt X sinh ra thì toả năng lượng như trên, như vậy tổng năng lượng toả ra là:
\(\dfrac{2,2575.10^{23}}{2}.74,5731=8,27.10^{24}MeV\)
\(A \rightarrow B+ _2^4He\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{A} =\overrightarrow P_{B} + \overrightarrow P_{\alpha} \)
Mà ban đầu hạt A đứng yên => \(\overrightarrow P_{A} = \overrightarrow 0\)
=> \(\overrightarrow P_{B} + \overrightarrow P_{\alpha} = \overrightarrow 0 .\)
=> \(P_B = P_{\alpha}\)
Mà \(P_{\alpha}^2 = 2m_{\alpha}K_{\alpha};P_B^2 = 2m_BK_B \)
=> \(2m_{\alpha}K_{\alpha}=2m_BK_B \)
=> \(\frac{K_B}{K_{\alpha}}= \frac{m_{\alpha}}{m_B}.\)
\(X \rightarrow Y + \alpha\)
Định luật bảo toàn động năng \(\overrightarrow P_{X} =\overrightarrow P_{Y}+ \overrightarrow P_{\alpha} = \overrightarrow 0. \)
=> \( P_{Y}= P_{\alpha} => m_Y v_Y = m_{\alpha}v_{\alpha}\) hay \(\frac{m_Y}{m_{\alpha}}= \frac{v_{\alpha}}{v_Y}.(1)\)
Lại có \(P^2 = 2mK.\)
=> \(m_YK_Y=m_{\alpha}K_{\alpha}\)
=> \(\frac{m_Y}{m_{\alpha}}= \frac{K_{\alpha}}{K_Y}.(2)\)
Từ (1) và (2) => \(\frac{m_Y}{m_{\alpha}}= \frac{K_{\alpha}}{K_Y} =\frac{v_{\alpha}}{v_Y} .\)
\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)
\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.
\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)
=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)
=> \(K_p +K_O = 6,48905MeV. (1)\)
Áp dụng định luật bảo toàn động lượng
P P α P p O
\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{O}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)
Từ (1) và (2) giải hệ phương trình ta được
\(K_p = 4,414MeV; K_O = 2,075 MeV.\)
\(_0^1n + _3^6 Li \rightarrow X + \alpha\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_n=\overrightarrow P_{\alpha}+ \overrightarrow P_{X} \)
P P P He X n
Dựa theo hình vẽ ta có : \(P_{X}^2+ P_{He}^2 = P_n^2\)
=> \(2m_{X}K_{X}+2m_{\alpha} K_{\alpha} = 2m_{n}K_{n}. \)
=> \(3,01600K_{X}+4,0016 K_{\alpha} = 1,00866K_{n} = 1,109526MeV.\ \ (1)\)
Áp dụng định luật bảo toàn năng lượng toàn phần
\(K_{n}+m_{n}c^2+m_{Li}c^2 = K_{\alpha} + m_{\alpha}c^2+ K_{X}+m_{X}c^2\)
=> \(K_{\alpha} + K_{X}=K_{n}+(m_{n}+m_{Li}-m_{\alpha}-m_{X})c^2 = 1,1 + 1,36 = 0,299 meV.\ \ (2)\)
Từ (1) và (2) giải hệ phương trình
\(K_{\alpha} = 0,21 MeV; K_{X }= 0,09 MeV.\)
\(_1^1p + _3^7 Li \rightarrow _2^4He+_2^4He\)
\(W_{tỏa} = (m_t-m_s)c^2 =( m_{Li}+m_p - 2m_{He}).931=17,4097MeV.\)
Số hạt nhân \(_2^4He\) trong 1,5 g heli là \(N= nN_A= \frac{m}{A}.N_A = \frac{1,5}{4}.6,02.10^{23}= 2,2575.10^{23} \)(hạt)
Mỗi phản ứng tạo ra 2 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 17,4097 MeV
=> Để tạo ra 2,2572.1023 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là
\(W = \frac{17,4097.2,2575.10^{23}}{2} = 1,965.10^{24}MeV.\)
Đáp án C
Động năng của vật:
W d = E - E 0 = E 0 ⇒ E = 2 E 0 ⇒ m = 2 m 0