Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án B.
Do không thay đổi về k, m => ω không đổi.
→ ω = k m = 20 0 , 2 = 10 π ( r a d / s ) .
Ta có năng lượng truyền cho vật là:
E t r u y e n = 1 2 m v 2 = 1 2 .0 , 2.1 2 = 0 , 1 ( J )
⇒ 1 2 k A 2 = E t r u y e n = 0 , 1 ⇒ A = 0 , 1 ( m )
Khi tới biên A lần đầu, năng lượng còn lại là:
=> Biên độ còn lại:
Tại VTCB : đental = 2.5cm
biên độ : A=(30 - 20)/2 = 5cm
vậy thời gian cần tính là t = T/4 + T/12
0k???
Bài 2 hỏi độ lớn của vật là cái j hả??????
Bai 3. oomega = 20rad/s
tại VTCB denta l = g/omega^2 = 2,5cm
A = 25 - 20 - 2,5 = 2,5cm
li độ tại vị trí lò xo có chiều dài 24cm x=24-22,5 = 1,5cm
Áp dụng CT độc lập với thời gian ta tính được v = 40cm/s
từ đó suy ra động năng thui
Hướng dẫn:
Độ biến dạng của lò xo tại các vị trí cân bằng tạm x 0 = μ m g k = 0 , 01.0 , 2.10 20 = 1 m m
+ Tại vị trí lò xo không biến dạng → so với vị trí cân bằng tạm ở nửa chu kì đầu vật có x 1 = 1 m m .
→ Biên độ dao động trong nửa chu kì đầu là A 1 = x 1 2 + v 1 ω 2 = 1.10 − 3 2 + 1 10 2 ≈ 10 c m
→ Lực đàn hồi cực đại F d h m a x = k A 1 = 1 , 98 N .
Đáp án C
Độ biến dạng của lò xo khi vật ở VTCB là: \(\Delta \ell_0=\dfrac{mg}{k}=\dfrac{1.10}{100}=0,1m=10cm\)
\(\omega=\sqrt{\dfrac{k}{m}}=10(rad/s)\)
Áp dụng CT: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)
\(\Rightarrow A^2=2^2+\dfrac{(20\sqrt 3)^2}{10^2}\)
\(\Rightarrow A = 4cm\)
Lực đàn hồi cực đại:
\(F_{dhmax}=k\Delta\ell_{max}=k(\Delta\ell_0+A)=100.(0,1+0,04)=14(N)\)
Lực đàn hồi cực tiểu:
\(F_{dhmin}=k\Delta\ell_{min}=k(\Delta\ell_0-A)=100.(0,1-0,04)=6(N)\)
Chọn D
+ Gọi A là biên độ cực đại của dao động. Khi đó lực đàn hồi cực đại của lò xo trong quá trình dao động Fmax = kA.
+ Để tìm A ta dựa vào định luật bảo toàn năng lượng:
+ Thay số, lấy g = 10m/s2 ta được phương trình: 0,1 = 10A2 + 0,02A => A = 0,099m (loại nghiệm âm).
+ Do đó Fmax = kA = 1,98N.
Khoảng thời gian giữa 2 lần liên tiếp động ăng bằng thế năng là T/4
\(\Rightarrow \dfrac{T}{4}=\dfrac{\pi}{40}\)
\(\Rightarrow T = \dfrac{\pi}{10}\)
\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)
Biên độ dao động: \(A=\dfrac{v_{max}}{\omega}=\dfrac{100}{20}=5(cm)\)
Ban đầu, vật qua VTCB theo chiều dương trục toạ độ \(\Rightarrow \varphi=-\dfrac{\pi}{2}\)
Vậy PT dao động là: \(x=5\cos(20.t-\dfrac{\pi}{2})(cm)\)
Hướng dẫn: Chọn đáp án A
Tại vị trí có li độ cực đại lần 1, tốc độ triệt tiêu và cơ năng còn lại:
Đáp án B
Công suất tức thời của lực đàn hồi: P = F.v = k.x. ω . A 2 - x 2
Theo Cô-si ta có:
Suy ra: P ≤ k . ω . A 2 2 ⇒ P m a x = k . ω . A 2 2
Thay v m a x = A . ω v à o t a được
Thay số vào ta được: P m a x = m . k . v m a x 2 2 = 0 , 5 . 50 . 1 2 2 = 2,5 W