Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp: Áp dụng định luật bảo toàn cơ năng W = Wđ + Wt
Cách giải:
Ta có :
Khi
\(F_{đh}=-k.x\Rightarrow x=\dfrac{F}{k}\)
Bảo toàn cơ năng ta có:
\(\dfrac{1}{2}mv_1^2+\dfrac{1}{2}k.x_1^2=\dfrac{1}{2}mv_2^2\) (lúc sau, lực đàn hồi = 0 thì x = 0 -> thế năng bằng 0)
\(\Rightarrow mv_1^2+k.(\dfrac{F_1}{k})^2=mv_2^2\)
Chọn C nhé bạn
\(\Rightarrow v_2^2 = v_1^2+\dfrac{F_1^2}{k.m}\)
Đáp án A
Vị trí có li độ x = 2 2 A vật có E d = E t = 0 , 5 E = 0 , 25 m ω 2 A 2 .
Thiếu m hoặc \(\omega\),
Hướng dẫn: Từ \(F_{dh}\le1,5\) suy ra miền giá trị của li độ \(x\), từ đó tìm ra thời gian bạn nhé.
Đáp án D
Phương pháp: Thế năng đàn hồi : Thế năng đàn hồi :
Cách giải:
Độ dãn của lò xo tại vị trí cân bằng:
Biên độ dao động của con lắc: A = 7,5 - Δl0 = 7,5 - 2,5 = 5cm
Ta có: Δl0< A
Chọn chiều dương hướng xuống
=> Vị trí lực đàn hồi có độ lớn nhỏ nhất là vị trí lò xo hông giãn cũng hông nén: Δl = 0
Thế năng đàn hồi tại vị trí đó:
Chọn C
Tần số góc của dao động điều hòa của conn lắc lò xo: ω = k m