Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có độ biến dạng của lò xo tại vị trí cân bằng: x = ∆ l = m g k = T 2 g 4 π 2 = 4 c m
Xét chuyển động của con lắc với thang máy: Chọn chiều dương hướng lên. Thang máy chuyển động nhanh dần đều ở vị trí: x = ∆ l .
Khi thang máy chuyển động, vị trí cân bằng bị dịch xuống dưới một đoạn bằng:
Nên li độ lúc sau là: x' = x + y.
Ta có:
Từ đó ta có:
Thay số vào ta được:
Độ biến dạng của lò xo tại vị trí cân bằng: $x=\Delta l=\dfrac{mg}{k}=\dfrac{T^2 g}{4\pi ^2} = 4cm.$
Xét chuyển động của con lắc với thang máy: Chọn chiều dương hướng lên. Thang máy chuyển động nhanh dần đều ở vị trí $x=\Delta l.$
Khi thang máy chuyển động, vị trí cân bằng bị dịch xuống dưới một đoạn bằng: $y=\Delta l=\dfrac{m\left(g+a\right)}{k}-\dfrac{mg}{k}.$
Nên li độ lúc sau là: $x+y.$
Ta có: $A^2=x^2+\left(\dfrac{v}{\omega }\right)^2.$
$A^2=\left(x+y\right)^2+\left(\dfrac{v}{\omega }\right)^2.$
Từ đó ta có: $A^2=A^2+y^2+2xy.$
Tính ra: $A=3 \sqrt{5}.$
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
Tại VTCB : đental = 2.5cm
biên độ : A=(30 - 20)/2 = 5cm
vậy thời gian cần tính là t = T/4 + T/12
0k???
Bài 2 hỏi độ lớn của vật là cái j hả??????
Bai 3. oomega = 20rad/s
tại VTCB denta l = g/omega^2 = 2,5cm
A = 25 - 20 - 2,5 = 2,5cm
li độ tại vị trí lò xo có chiều dài 24cm x=24-22,5 = 1,5cm
Áp dụng CT độc lập với thời gian ta tính được v = 40cm/s
từ đó suy ra động năng thui
Ta có :
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
Độ giãn của lò xo tại VTCB: \(\Delta l_0=\frac{9}{\omega^2}=2cm\)
Lực đàn hồi có độ lớn 1,5 N
\(F=k.\left(\Delta l\pm x\right)\Leftrightarrow1,5=50.\left(0,02\pm x\right)\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1cm\\x=-1cm\end{array}\right.\)
Khoảng thời gian ngắn nhất vật đi qua hai vị trí mà lực đàn hồi F = 1,5 N là :
\(t=\frac{T}{12}+\frac{T}{12}=\frac{\pi}{30\sqrt{5}}=s\)
Đáp án C
Giải thích: Đáp án D
Phương pháp: Con lắc đơn và con lắc lò xo chịu thêm tác dụng của lực quán tính
Cách giải:
Vì thang máy chuyển động nhanh dần đều xuống phía dưới nên hai con lắc cùng chịu tác dụng của lực quán tính hướng lên phía trên.
* Xét với con lắc đơn:
+ Lúc này gia tốc trọng trường hiệu dụng tác dụng lên con lắc đơn là: g1 = g – a = 10 – 2,5 = 7,5 (m/s2)
+ Lúc qua VTCB, con lắc đơn có tốc độ và gia tốc trọng trường hiệu dụng g nên sau đó sẽ dao động với biên độ là:
* Xét với con lắc lò xo:
+ Con lắc lò xo chịu tác dụng của lực quán tính hướng lên nên VTCB dịch chuyển lên phía trên so với VTCB ban đầu một đoạn:
Do đó thời điểm tác dụng lực, con lắc lò xo có li độ x2=x0=2,5cm và tốc độ v2=ωA nên sau đó sẽ dao động với biên độ là:
+ Tỉ số giữa biên độ dài của con lắc đơn và con lắc lò xo khi đó là:
\(T=2\pi\sqrt{\frac{\Delta l_0}{9}}=0,4s\)
\(\Rightarrow\Delta l_0=4=\frac{A\sqrt{2}}{2}\)
Thời gian lò xo không giãn là \(t=2t-\frac{A\sqrt{2}}{2}\Rightarrow-A=\frac{T}{4}=0,10\left(s\right)\)
Vậy D đúng
Đáp án B
Ta có : , khi thang máy chuyển động nhanh dần đều lên trên thì VTCB mới cách VTCB cũ một đoạn là :
Tại vị trí này vật có li độ x = 1,6 cm và vận tốc bằng 0
Sau 3s thì vật ở vị trí biên đối diện ( chọn chiều dương hướng lên )
Đáp án C
Khi thang máy đứng yên, độ biến dạng của lò xo tại vì trí cân bằng là:
Xét chuyển động của con lắc với thang máy. Chọn chiều dương hướng lên.
Khi thang máy chuyển động nhanh dần đều đi lên thì g’ = g + a.
Khi đó vị trí cân bằng của con lắc bị dịch xuống dưới một đoạn
cm
-> Li độ lúc sau là: x + y