K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

- Biên độ dao động của con lắc:

Bài tập trắc nghiệm Vật Lí 12 | Câu hỏi trắc nghiệm Vật Lí 12

- Độ giãn của lò xo ở vị trí cân bằng:

 

20 tháng 5 2018

Đáp án C

Biên độ dao động của con lắc:

 

Độ giãn của lò xo ở vị trí cân bằng:  ω   =   k m   =   g ∆ l   ⇒ ∆ l   =   g ω 2   =   10 20 2   =   2 , 5   c m

Ta có  A   >   ∆ l   ⇒   F d h m i n     =   0   N

27 tháng 7 2016

Ta có :

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

23 tháng 8 2016

Ta có: \Delta l = \frac{mg}{k}= 10 cm
Lực đàn hồi:
 F_{max} = k(\Delta l + A) = 1,5 N
F_{min} = k(\Delta l - A) = 0,5 N

24 tháng 7 2016

\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)

2 tháng 8 2016

Độ biến dạng của lò xo khi vật ở VTCB là: \(\Delta \ell_0=\dfrac{mg}{k}=\dfrac{1.10}{100}=0,1m=10cm\)

\(\omega=\sqrt{\dfrac{k}{m}}=10(rad/s)\)

Áp dụng CT: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow A^2=2^2+\dfrac{(20\sqrt 3)^2}{10^2}\)

\(\Rightarrow A = 4cm\)

Lực đàn hồi cực đại: 

\(F_{dhmax}=k\Delta\ell_{max}=k(\Delta\ell_0+A)=100.(0,1+0,04)=14(N)\)

Lực đàn hồi cực tiểu:

\(F_{dhmin}=k\Delta\ell_{min}=k(\Delta\ell_0-A)=100.(0,1-0,04)=6(N)\)

1 tháng 6 2016
 

Độ giãn của lò xo tại VTCB: \(\Delta l_0=\frac{9}{\omega^2}=2cm\)

Lực đàn hồi có độ lớn 1,5 N
\(F=k.\left(\Delta l\pm x\right)\Leftrightarrow1,5=50.\left(0,02\pm x\right)\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1cm\\x=-1cm\end{array}\right.\)

Khoảng thời gian ngắn nhất vật đi qua hai vị trí mà lực đàn hồi F = 1,5 N là : 
\(t=\frac{T}{12}+\frac{T}{12}=\frac{\pi}{30\sqrt{5}}=s\)

Đáp án C

31 tháng 5 2016

Vận tốc của hai vật sau va chạm:  (M + m)V = mv   

=> V = 0,02\(\sqrt{2}\) (m/s)

Tọa độ ban đầu của hệ hai vật  x0 = \(\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}\) = 0,04m = 4cm

\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2+\left(M+m\right)}{k}=0,0016\Rightarrow A=0,04m=4cm\)

→ B

31 tháng 5 2016

Vận tốc của hai vật sau va chạm:   \(\left(M+m\right)V=mv\)

\(\rightarrow V=0,02\sqrt{2}\left(m\text{ /}s\right)\)

Tọa độ ban đầu của hệ hai vật: \(x_0=\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}=0,04m=4cm\)

\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2\left(M+m\right)}{k}=0,0016\) \(\rightarrow A=0,04m=4cm\)

Đáp án B