K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

15 tháng 1 2019

Đáp án D

Tổng thể tích nước và 5 viên bi là:  120 + 5. 4 π .1 3 3 ≈ 140 , 94 m l

Lượng nước trong cốc có dạng hình trụ, với bán kính là: 6 − 0 , 2.2 2 =   2 , 8 c m

Khi đó, chiu cao h' của mực nước tinh từ đáy trong của cốc được tính từ:

π .2 , 8 2 h ' = 140 , 94 ⇔ h ' = 5 , 72

Chiu cao từ đáy trong côc đến mép cốc là: 9 − 1 = 8

Vậy mặt nước trong cách mép:  8   − 5.72   =   2 , 28.

19 tháng 11 2018

16 tháng 1 2018

Đáp án B

Phương pháp:

Tính thể tích mỗi viên bi hình cầu: V = 4 3 π R 3 ⇒ 5 viên có thể tích

Tính thể tích lượng nước ban đầu (cột nước hình trụ):  V 2 = V n = π R 2 h .

Tính tổng thể tích cả bi và nước lúc sau V = V 1 + V 2 , từ đó suy ra chiều cao cột nước lúc sau và khoảng cách từ mặt nước đến miệng cốc.

Cách giải:

Chú ý khi giải:

Các em có thể sẽ quên không tính thể tích của 5 viên bi, hoặc nhầm lẫn đường kính 6cm thành bán kinh 6cm dẫn đến các thể tích bị sai.

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

14 tháng 6 2018

Cách giải:

Để uống được nước thì con quạ phải thả các viên bi vào cốc sao cho mực nước trong cốc dâng lên ít nhất: 20 -12 - 6 = 2( cm)

Khi đó, thể tích của mực nước dâng lên là

9 tháng 10 2015

\(\left(C_1\right)\) có dạng \(y=x^3-3x\)

Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2

ta tính \(y'=3x^2-3\)

gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm 

phương trình tiếp tuyến tại điểm B có dạng 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)

suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)

do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có

\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)

từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)

để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt

suy ra pt (**) có 2 nghiệm phân biệt khác -1  

từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1

suy ra đc tập hợ điểm A để thỏa mãn đk bài ra

22 tháng 4 2019

Đáp án D

Phương pháp:

+) Thể tích khối nước ít nhất cần dâng lên = Tổng thể tích đá thả vào.

+) Số viên đá = Tổng thể tích đá thả vào : Thể tích 1 viên đá