Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
> O x M 7 -7 π/3
Quỹ đạo chuyển động là 14 cm → A = 7 cm.
Tại thời điểm ${t_0}$ chất điểm ở vị trí M có pha ban đầu là –π/3; độ lớn gia tốc cực đại tại biên.
→ từ M đến biên lần thứ 3 thì ∆φ = π/3 + 2π = 7π/3 rad.
→ t = ∆φ/ω = 7/6 s và s = 3,5 + 28 = 31,5 cm
→ v = s/t = 27 cm/s.
Đáp án A
Khi pha dao động của chất điểm là 0 rad thì chất điểm đang ở vị trí biên dương => li độ x = A = 4 cm. Suy ra chiều dài quỹ đạo bằng 2A = 8 cm
Chọn đáp án D
+ Khi pha dao động của chất điểm là 0 rad thì chất điểm đang ở vị trí biên dương
=> li độ x = A = 4cm.Suy ra chiều dài quỹ đạo bằng 2A=8cm
Chọn đáp án D.
Vật dao động điều hòa nên có dạng phương trình li độ là x = Acos(ωt + φ) cm. Vậy khi pha dao động của chất điểm là 0 rad thì chất điểm có li độ là 4 cm nên thay vào phương trình ta có: 4 = Acos0 <=> A = 4 cm.
Quỹ đạo dao động bằng L = 2A = 8 cm.
Dao động tổng hợp x = x1 + x2
+ Khi x2 = 0 thì x1 = x - x2 = \(-5\sqrt{3}\)
+ Khi x1 = - 5 thì x2 = x - x1 = -2 + 5 = 3
Giả sử pt \(x_1=10\cos\left(\omega t\right)\) thì \(x_2=A_2\cos\left(\omega t+\varphi\right)\) (với \(\left|\varphi\right|<\frac{\pi}{2}\))
Theo giả thiết ta có:
\(\begin{cases}10\cos\left(\omega t\right)=-5\sqrt{3}\\A_2\cos\left(\omega t+\varphi\right)=0\end{cases}\)\(\Rightarrow\begin{cases}\cos\left(\omega t\right)=-\frac{\sqrt{3}}{2}\\\cos\left(\omega t+\varphi\right)=0\end{cases}\)
cos O M1 M2 -√3/2 60°
Do \(\left|\varphi\right|<\frac{\pi}{2}\) nên ta chỉ có trường hợp như hình trên thỏa mãn, nghĩa là ta tìm đc \(\varphi=-\frac{\pi}{3}\)
Mặt khác: \(\begin{cases}10\cos\left(\omega t'\right)=-5\\A_2\cos\left(\omega t'+\varphi\right)=3\end{cases}\)\(\Rightarrow\begin{cases}\cos\left(\omega t'\right)=-\frac{1}{2}\\\cos\left(\omega t'+\varphi\right)=\frac{3}{A_2}\end{cases}\)
Cũng biểu diễn trên đường tròn lượng giác như trên, ta được
cos O M1 M2 -1/2 1/2
\(\Rightarrow A_2=6cm\)
Biên độ tổng hợp:
\(A^2=10^2+6^2+2.10.6.\cos\frac{\pi}{3}\Rightarrow A=14\)cm.
Độ lệch pha giữa hai dao động là ∆φ = 0,75π – 0,5π = 0,25π rad.
1,vật qua vị trí x=-5 => thay x vào phương trình dao động .
2,T=0,4 s=> t=1s=2,5 T=2T+0,5T. 2chu kì sẽ đi qua x=1 bốn lần,thêm một nửa chu kì nữa được 1 lần.tổng cộng là 5 lần. Vẽ đường tròn ra nha cậu
3, denta t= 4,625-1=3,625 s=3,625 T=3T+1/2 T+1/8 T
tại t1=1s,x=căn 2.
quãng đường đi được trong 3,625 T=3. 4A+2A+A căn 2/2 .Vì một ch kì vật đi được 4A,cậu cũng vè đường tròn ra là thấy
S=29,414 cm ,v=S/t= 29,414/3,625=8,11 cm/s.
4.Tự làm nốt nhé,cứ ốp vào dường tròn là ra ngay.
Bạn tham khảo hai bài tương tự này nhé:
Câu hỏi của Nguyễn Khánh Quỳnh - Học và thi online với HOC24
Câu hỏi của Hue Le - Học và thi online với HOC24
Ta thấy trên nửa đường thẳng thẳng kẻ từ A và vuông góc với AB có 4 điểm theo thứ tự M, N, P, Q dao động với biên độ cực đại, nên trên AB có 9 điểm dao động với biên độ cực đai với - 4 ≤ k ≤ 4 ( d2 – d1 = kλ)
A B x M N P Q
Cực đại tại M, N, P, Q ứng với k = 1; 2; 3; 4
Đặt AB = a
Tại C trên Ax là điểm dao động với biên độ cực đại:
CB – CA = kλ (*)
CB2 – CA2 = a2 → (CB + CA) (CB – CA) = a2
CB + CA = \(\dfrac{a^2}{k.\lambda}\)(**)
Từ (*) và (**) suy ra \(CA=\dfrac{a^2}{2k.\lambda}-\dfrac{k}{2}\lambda\)
Tại M: ứng với k = 1: MA = \(\dfrac{a^2}{2\lambda}\)- 0,5λ (1)
Tại N: ứng với k = 2: NA = \(\dfrac{a^2}{4\lambda}\)- λ (2)
Tại P: ứng với k = 3: PA = \(\dfrac{a^2}{6\lambda}\) - 1,5 λ (3)
Tại Q: ứng với k = 4: QA = \(\dfrac{a^2}{8\lambda}\) - 2 λ (4)
Lấy (1) – (2) : MN = MA – NA = \(\dfrac{a^2}{4\lambda}\) + 0,5λ = 22,25 cm (5)
Lấy (2) – (3) : NP = NA – PA = \(\dfrac{a^2}{12\lambda}\) + 0,5λ = 8,75 cm (6)
Lấy (5) - (6) → \(\dfrac{a^2}{\lambda}\) = 81 (cm) và λ = 4 cm .
Thế vào (4) → QA = 2,125 cm.
thầy có thể giải thích e chổ CB-CA= Klamda . Với tại s CB= K/2 lamda k thầy?