Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x là vận tốc khi xuôi dòng( x>0) (km/h)
gọi y là vận tốc ngược dòng(y>0) (km/h)
*, ca nô chạy trên sông trong 8 giờ:
xuôi dòng 81km:81/x và ngược dòng 105km: 105/y
=> phương trinh: 81/x + 105/y=8 (1)
*,ca nô chạy trong 4 giờ:
xuôi dòng 54km: 54/x và ngược dòng 42km: 42/y
=> ph trình: 54/x + 42/y = 4 (2)
từ (1) và (2) ta có hệ pt:
....
....
..... => x=27km/h
y=21km/h
Gọi x (km/h) là vận tốc riêng của cano.(x>0)
Gọi y (km/h) là vận tốc dòng nước.(y>0)
Theo đề bài ta có hệ phương trình:
\(\hept{\begin{cases}\frac{81}{x+y}+\frac{105}{x-y}=8\\\frac{54}{x+y}+\frac{42}{x-y}=4\end{cases}}\)
Giải ra ta được:
\(\hept{\begin{cases}x+y=27\\x-y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=24\\y=3\end{cases}}}\)
Vậy vận tốc riêng của cano là 24km/h.
Vận tốc dòng nước là 3km/h
Gọi vận tốc riêng của cano là \(x\left(km/h\right),x>4\).
Vận tốc khi cano đi xuôi dòng là: \(x+4\left(km/h\right)\).
Thời gian cano đi xuôi dòng là: \(\frac{120}{x+4}\left(h\right)\).
Vận tốc khi cano đi ngược dòng là: \(x-4\left(km/h\right)\).
Thời gian cano đi ngược dòng là: \(\frac{96}{x-4}\left(h\right)\).
Ta có phương trình:
\(\frac{96}{x-4}-\frac{120}{x+4}=1\)
\(\Rightarrow96\left(x+4\right)-120\left(x-4\right)=\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow x^2+24x-880=0\)
\(\Leftrightarrow x=20\)(vì \(x>4\))
.
Gọi vận tốc thực của ca nô là x ( km/h ; x > 4 )
Vận tốc khi ca nô xuôi dòng = x + 4 (km/h)
Vận tốc khi ca nô ngược dòng = x - 4 (km/h)
Thời gian ca nô xuôi dòng = 136/x+4 (giờ)
Thời gian ca nô ngược dòng = 91/x-4 (giờ)
Tổng thời gian xuôi dòng và ngược dòng là 7h30' = 15/2h
=> Ta có phương trình : \(\frac{136}{x+4}+\frac{91}{x-4}=\frac{15}{2}\)
<=> \(\frac{136\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{91\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\frac{15}{2}\)
=> 15( x2 - 16 ) = 2( 227x - 180 )
<=> 15x2 - 454x + 120 = 0
Δ' = b'2 - ac = (-227)2 - 15.120 = 49 729
Δ' > 0, áp dụng công thức nghiệm thu được x1 = 30 (tm) ; x2 = 4/15 (ktm)
Vậy vận tốc thực của ca nô là 30km/h
Gọi \(a,b\) lần lượt là vận tốc riêng của ca nô và vận tốc dòng nước \(\left(a>b>0\right)\).
Thời gian ca nô đi xuôi dòng khúc sông \(60km\) là : \(\dfrac{60}{a+b}\left(h\right)\).
Thời gian ca nô đi ngược dòng \(48km\) là : \(\dfrac{48}{a-b}\left(h\right)\).
Theo đề bài thì \(\dfrac{60}{a+b}+\dfrac{48}{a-b}=6\left(1\right)\).
Thời gian ca nô đi xuôi dòng \(40km\) là : \(\dfrac{40}{a+b}\left(h\right)\).
Thời gian ca nô đi ngược dòng \(80km\) là : \(\dfrac{80}{a-b}\left(h\right)\)
Cũng theo đề bài, ta có : \(\dfrac{40}{a+b}+\dfrac{80}{a-b}=7\left(2\right)\).
Từ \((1)\) và \((2)\), ta có hệ phương trình :
\(\left\{{}\begin{matrix}\dfrac{60}{a+b}+\dfrac{48}{a-b}=6\\\dfrac{40}{a+b}+\dfrac{80}{a-b}=7\end{matrix}\right.\left(I\right)\)
Đặt : \(x=\dfrac{20}{a+b}\) và \(y=\dfrac{16}{a-b}\). Hệ \((I)\) được viết lại thành :
\(\left\{{}\begin{matrix}3x+3y=6\\2x+5y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\2x+5y=7\end{matrix}\right.\)
Hay : \(\left\{{}\begin{matrix}5x+5y=10\\2x+5y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{20}{a+b}=1\\\dfrac{16}{a-b}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=20\\a-b=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=36\\a+b=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=18\\b=2\end{matrix}\right.\) (thỏa mãn).
Vậy : Vận tốc riêng của ca nô là \(18(km/h)\) và vận tốc dòng nước là \(2(km/h).\)
Gọi vận tốc riêng của cano là x (km/h) với x>0
Gọi vận tốc của dòng nước là y (km/h) với y>0 và y<x
Vận tốc cano khi xuôi dòng: \(x+y\) (km/h)
Vận tốc cano khi ngược dòng: \(x-y\) (km/h)
Do cano xuôi dòng 60km và ngược dòng 48km hết 6h nên ta có:
\(\dfrac{60}{x+y}+\dfrac{48}{x-y}=6\)
Do cano xuôi dòng 40km và ngược dòng 80km thì hết 7h nên ta có:
\(\dfrac{40}{x+y}+\dfrac{80}{x-y}=7\)
Ta được hệ: \(\left\{{}\begin{matrix}\dfrac{60}{x+y}+\dfrac{48}{x-y}=6\\\dfrac{40}{x+y}+\dfrac{80}{x-y}=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{120}{x+y}+\dfrac{96}{x-y}=12\\\dfrac{120}{x+y}+\dfrac{240}{x-y}=21\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{120}{x+y}+\dfrac{96}{x-y}=12\\\dfrac{144}{x-y}=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=16\\\dfrac{120}{x+y}+\dfrac{96}{16}=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=16\\x+y=20\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=18\\y=2\end{matrix}\right.\)
Gọi x (km/h) là vận tốc của dòng nước
y (km/h) là vận tốc riêng của cano. đk: x, y > 0.
vân tốc khi xuối dòng : y + x
vận tốc khi ngược dòng : y - x
*108 / (y + x) + 63 / (y - x) = 7
* 81 / (y + x) + 84 / (y - x) = 7
có thể qui đồng và giải trực tiếp hệ trên. tuy nhiên nếu đặt ẩn phụ thì nhẹ hơn:
đặt u = 1/(y + x); v = 1/(y - x).
ta có hệ pt:
108u + 63v = 7
81u + 84v = 7
=> u =1/27 ; v = 1/21
=> ta có hệ pt:
y + x = 1/u = 27
y - x = 1/v = 21
=> x = 3 km/h; y = 24 km/h
Gọi x (km/h) là vận tốc của dòng nước
y (km/h) là vận tốc riêng của cano. đk: x, y > 0.
vân tốc khi xuối dòng : y + x
vận tốc khi ngược dòng : y - x
*108 / (y + x) + 63 / (y - x) = 7
* 81 / (y + x) + 84 / (y - x) = 7
có thể qui đồng và giải trực tiếp hệ trên. tuy nhiên nếu đặt ẩn phụ thì nhẹ hơn:
đặt u = 1/(y + x); v = 1/(y - x).
ta có hệ pt:
108u + 63v = 7
81u + 84v = 7
=> u =1/27 ; v = 1/21
=> ta có hệ pt:
y + x = 1/u = 27
y - x = 1/v = 21
=> x = 3 km/h; y = 24 km/h
Gọi vận tốc thực của ca nô là \(x\left(km/h\right)\)dòng nước là \(y\left(km/h\right)\)với \(x>y>0\)
Vận tốc xuôi dòng là \(x+y\left(km/h\right)\), vận tốc ngược dòng là \(x-y\left(km/h\right)\)
Lần đi thứ nhất, thời gian ca nô đi xuôi dòng là: \(\frac{70}{x+y}\left(h\right)\), thời gian ca nô đi ngược dòng là \(\frac{50}{x-y}\left(h\right)\)
Lần đi thứ hai, thời gian ca nô đi xuôi dòng là: \(\frac{35}{x+y}\left(h\right)\), thời gian ca nô đi ngược dòng là \(\frac{75}{x-y}\left(h\right)\)
Vì lần thứ nhất, ca nô dành ra 4h để đi xuôi và ngược dòng nên ta có pt \(\frac{70}{x+y}+\frac{50}{x-y}=4\)(1)
Lần thứ hai, ca nô cũng dành ra 4h để đi xuôi và ngược dòng nên ta có pt \(\frac{35}{x+y}+\frac{75}{x-y}=4\)(2)
Từ (1) và (2) ta có hpt \(\hept{\begin{cases}\frac{70}{x+y}+\frac{50}{x-y}=4\\\frac{35}{x+y}+\frac{75}{x-y}=4\end{cases}}\)(*)
Đặt \(\hept{\begin{cases}\frac{35}{x+y}=a\left(a>0\right)\\\frac{25}{x-y}=b\left(b>0\right)\end{cases}}\), khi đó (*) trở thành \(\hept{\begin{cases}2a+2b=4\\a+3b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2\\a+3b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)(nhận)
\(\Rightarrow\hept{\begin{cases}\frac{35}{x+y}=1\\\frac{25}{x-y}=1\end{cases}}\Rightarrow\hept{\begin{cases}x+y=35\\x-y=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=30\\y=5\end{cases}}\)(nhận)
Vậy vận tốc dòng nước là \(5km/h\)
Gọi vận tốc riêng của ca nô và vận tốc dòng nước lần lượt là x, y (km/h; x > y > 0)
Suy ra vận tốc xuôi dòng của ca nô là x + y(km/h); vận tốc ngược dòng là x – y (km/h)
Ca nô chạy trên sông trong 8h xuôi dòng được 81 km và ngược dòng 105 km nên ta có phương trình: 81 x + y + 105 x - y = 8 (1)
Ca nô chạy trên sông trong 4h xuôi dòng được 54km và ngược dòng 42km nên ta có phương trình: 54 x + y + 42 x - y = 4 (2)
Vậy vận tốc riêng của ca nô và vận tốc dòng nước lần lượt là 24 km/h và 3 km/h
Đáp án: D